

22 Tamworth Street PO Box 6278 DUBBO NSW 2830

Ph: 0407 875 302 Fax: (02) 8607 8122 admin@grounddoc.com.au

24 September 2018

Hy-tec Industries Pty Ltd Austen Quarry 391 Jenolan Caves Road Hartley NSW 2790 rod.welsh@adbri.com.au

#### Attention: Mr Rodd Welsh

Dear Rodd,

#### **RE:** JUNE 2018 GROUNDWATER MONITORING RESULTS, AUSTEN QUARRY, HARTLEY, NSW

Ground Doctor was engaged by Hy-tec Industries Pty Ltd (Hy-tec) to undertake the June 2018 round of baseline groundwater monitoring at the Austen Quarry, 391 Jenolan Caves Road, Hartley, NSW (the site).

### **1** Background Information

The Stage 2 Expansion of the Austen Quarry was approved on 15 July 2015 (development application SSD-6084). An updated site specific Water Management Plan (WMP) (Groundwork Plus, 2017) was developed as required by the conditions of consent for development. The WMP included provisions for managing both surface water and groundwater impacts at the site. The revised WMP was approved in late 2017.

The WMP required the establishment of groundwater monitoring bores at three locations around the periphery of the open pit, establishment of water level data loggers in each bore and collection of four rounds of baseline groundwater quality over two years following establishment of the monitoring bores.

The monitoring bores were established in December 2017. Ground Doctor conducted the first round of baseline monitoring in early January 2018. Water level loggers were installed into the monitoring bores at the completion of the January 2018 monitoring round.

### 2 Objectives

The objectives of the work undertaken was to complete the second round of baseline groundwater monitoring in accordance with the WMP.

# 3 Monitoring Bore Locations

The monitoring bore locations are shown on *Figure 1* of *Attachment A*. Monitoring bore coordinates and details are summarised in *Table 1*. *Table 1* also presents a summary of the monitoring bore construction details.

| Bore ID | Easting | Northing | Approx.<br>Surface<br>Elevation<br>(AHD) | Depth to<br>Bottom (btc) | Screened<br>Intervals<br>(bgl) | Stickup<br>(agl) | Depth to<br>Water (btc) |
|---------|---------|----------|------------------------------------------|--------------------------|--------------------------------|------------------|-------------------------|
| MB01S   | 235245  | 6281077  | 700m                                     | 7.42m                    | 3.7-6.7m                       | 0.8m             | 4.63m                   |
| MB01D   | 235259  | 6281098  | 700m                                     | 29.30m                   | 20-23m<br>26-28.5m             | 0.8m             | 5.49m                   |
| MB02    | 235915  | 6280398  | 710m                                     | 29.10m                   | 10.5-13.5m<br>22.5-28.5m       | 0.6m             | 17.43m                  |
| MB03    | 236419  | 6281786  | 690m                                     | 25.31m                   | 18.5-24.5m                     | 0.4m             | Dry                     |

Table 1: Monitoring Bore Construction Details

Eastings and northings are MGA Zone 56.

btc = below top of casing

bgl = below ground level

agl = above ground level

# 4 Groundwater Sampling Methodology

Each monitoring bore was gauged using an electronic dip meter prior to any disturbance of the water column. Bores were gauged on 21 June 2018. The depth to water was measured from the top of casing at each bore. MB03 was installed into a dry hole and the hole was found to be dry at the time of gauging.

The water level logger was removed from each borehole following gauging. Data stored within the water level loggers were downloaded on 22 June 2018. The water level loggers were reinstated in each monitoring bore following sampling on the morning of 22 June 2018.

Deep bores were purged dry using a bore specific disposable bailer. The deep bores were bailed dry on 21 June 2018. The wells were allowed to recover for a period of approximately 18 hours prior to sample collection. The bailer was lowered gently into the deep bores to collect samples that were free of suspended sediment. After samples had been collected additional water was bailed from the deep bores to allow measurement of field water quality parameters.

The shallow bore (MB01S) was also bailed dry prior to sampling. The well was allowed to recover for a period of approximately 20 minutes prior to sampling. Water quality parameters were measured regularly during purging of MB01S to assess the effectiveness of purging as well as being measured at the time of sampling.

A water sample was collected from a sump in the pit floor on 22 June 2018. An unpreserved sample bottle was filled directly from the ponded water in the sump. This bottle was then used to fill preserved sample bottles and samples requiring field filtering. Once sampling was complete field water quality parameters were measured. The water quality meter was placed in the pond and allowed to equilibrate for a period of approximately 10 minutes. The field water quality parameters were then recorded.

Water quality parameters were measured in Yorkeys Creek adjacent to MB01S on 22 June 2018. The water quality meter was left to equilibrate within standing water in the Creek for a period of approximately 10 minutes prior to recording the results. This location does not form part of the monitoring requirements outlined in the WMP, however, the data was collected to compliment

shallow groundwater measurements in the nearby MB01S, which may interact with water in the Creek or vice versa.

Water quality measurements were made using a YSI water quality meter hired from Airmet Scientific. The meter was calibrated prior to dispatch. A calibration record for the water quality meter is presented as Attachment C.

Water samples were collected into laboratory supplied bottles, each marked with the appropriate identification. Sample bottles were appropriately preserved where necessary. The samples for dissolved metals analysis were filtered in the field using disposable  $45\mu$ m filters. The sampler wore disposable nitrile gloves at all times during sampling to minimise potential for cross contamination. Samples were placed into an esky with ice immediately after collection. Ice was replenished as required to ensure samples remained cool whilst in storage.

Water samples were dispatched to ALS Lithgow laboratory on the afternoon of 22 June 2018. It is understood that the samples were forwarded to the ALS Sydney laboratory for analysis on Monday 25 June 2018.

Groundwater samples collected from each monitoring bore were analysed for major cations, major anions, nutrients and dissolved metals as specified in Table 37 of the WMP (Groundwork Plus, 2017). The water samples collected from the pit were analysed for major cations, major anions, nutrients, dissolved metals, total recoverable hydrocarbons (TRH), benzene, toluene, ethylbenzene, xylenes (BTEX) and polycyclic aromatic hydrocarbons (PAHs) as specified in Table 37 of the WMP (Groundwork Plus, 2017).

### 5 Field Observations

Field observations were recorded on bore sampling forms, which are presented as *Attachment B*. Depth to water results and measured field parameters at the time of sampling are presented in *Table 2* with data collected during the first (January 2018) monitoring round.

| Bore ID          | Date   | DTW (m btc) | Temp (oC) | DO (ppm) | EC (uS/cm) | рН   | ORP (mV) |
|------------------|--------|-------------|-----------|----------|------------|------|----------|
| MB01S            | Jan-18 | 4.63m       | 15.9      | 6.08     | 575        | 6.27 | -11.6    |
|                  | Jun-18 | 4.48m       | 16.5      | 5.41     | 343        | 7.41 | 94       |
| MB01D            | Jan-18 | 5.49m       | 16.7      | 2.64     | 1170       | 7.02 | -22      |
|                  | Jun-18 | 1.94m       | 14.7      | 1.56     | 779        | 7.44 | 85       |
| MB02             | Jan-18 | 17.43m      | 16.4      | 3.73     | 1210       | 7.03 | -5       |
|                  | Jun-18 | 17.54m      | 12.9      | 5.08     | 927        | 7.32 | 130      |
| MB03             | Jan-18 | Dry         | -         | -        | -          | -    | -        |
|                  | Jun-18 | Dry         | -         | -        | -          | -    | -        |
| Pit Water        | Jan-18 | -           | 21.9      | 4.30     | 820        | 7.00 | 8        |
|                  | Jun-18 | -           | 7.6       | 6.97     | 357        | 7.01 | 119      |
| Yorkeys<br>Creek | Jan-18 | -           | -         | -        | -          | -    | -        |
|                  | Jun-18 | -           | 6.7       | 12.25    | 353        | 7.93 | 104      |

Table 2: Summary of Field Observations

The certificate of analysis for water samples is presented as Attachment E.

A summary of analytical data is presented in *Table G1* of *Attachment G*. The summary table presented January 2018 and June 2018 baseline groundwater quality against preliminary triggers outlined in the WMP (Groundwork Plus, 2017).

Only two rounds of data have been collected from the site to date with the aim of establishing a baseline. There can be no meaningful interpretation of data trends in a two point data set.

Exceedances of preliminary triggers in the June 2018 monitoring round were as follows:

- The reported zinc concentration in the water sample collected from the "pit" exceeded the ANZECC (2000) threshold for 95% protection of fresh water aquatic ecosystems. Zinc was detected in the "pit" sample in both monitoring rounds, as well as in two of the groundwater monitoring bores.
- The reported cadmium concentration in the water sample collected from the "pit" exceeded the ANZECC (2000) threshold for 95% protection of fresh water aquatic ecosystems and the Australian Drinking Water (2011) threshold. Cadmium was detected in the "pit" sample in both monitoring rounds.
- The report manganese concentration in the sample collected from "MB01D" exceeded the Australian Drinking Water (2011) threshold.

There is no obvious source of metals contamination within the quarry. The observed occurrences of metals in water in the base of the quarry and in some groundwater monitoring wells is attributed to naturally occurring sources. The significance of the reported concentrations of metals at the designated monitoring points will be reassessed once four rounds of baseline data have been collected.

# 7 Water Level Logger Data

All water level loggers were set to record water level at 6 hour intervals commencing 12am on 12 January 2018. The water level data loggers were not vented. A barologger was deployed to record air pressure at the same recording interval to allow water level logger readings to be corrected to account for changes in air pressure.

Water level data loggers installed in MB01S, MB01D and MB02, and the barometric pressure logger installed at MB03, were downloaded on 22 June 2018.

The raw data was corrected for changes in air pressure using the barometric pressure data. The manual water level measurement collected at the time the loggers were removed from each borehole were used to convert the water level logger data to a depth to water relative to the top of the PVC bore casing.

At the completion of the monitoring round the water level loggers were redeployed in their respective boreholes.

Corrected water level data is presented graphically as *Attachment D*.

Water levels within MB01S and MB02 were relatively consistent across the monitoring period. The water level within MB01D stayed below the water level logger for a period of approximately 3 weeks after deployment owing to the slow rate of groundwater recharge following purging and sampling in January 2018. Once groundwater had risen above the data logger in MB01D the depth

to water varied by more than 3m over the monitoring period. The reason for variation in MB01D is not well understood but should become more apparent with the collection of longer term water level data.

At the time of reporting relative bore elevation data was not available. Using the observable elevation difference between MB01D and MB01S it is apparent that the standing water level in MB01D is higher than that in the nearby MB01S. This observation indicates that there is upward flow of groundwater toward Yorkeys Creek in the vicinity of those monitoring bores. That is, water within Yorkeys Creek is likely to be comprised of both surface water and groundwater discharge.

### 8 Estimated Groundwater Inflow to Pit

The WMP specifies that water inflow to the pit should be estimated on a quarterly basis by measuring changes to water levels within the pit during a period of fine weather and no water extraction. Ground Doctor monitored water level changes in a sump excavated into the lowest part of the pit between 9am on 21 June 2018 and 9am on 22 June 2018.

Water had not been removed from the pit for several days prior to monitoring. There had been no significant rainfall in the days leading up to the monitoring period and there was no obvious overland flow of water into the pit floor during the monitoring period.

A measuring benchmark was established in the sump at the commencement of monitoring and the height of standing water was noted to the nearest millimetre. The height of water at the benchmark was noted 24 hours later. Ground Doctor recorded a change in water level of 15mm during the 24 hour monitoring period.

A photographic log of the measurement point and the extent of the pit and location of the sump is presented as *Attachment F*.

The sump had direct connection to rock in the base of the pit that had been blasted, but not excavated. The pit floor at the time of monitoring was estimated to be approximately 230m long with an average width of 30m, giving an estimated area of approximately 6900m<sup>2</sup>. The average porosity of the material in the base of the pit was assumed to be 20%. This was considered conservative as the rock had not previously been excavated so was likely to have a much lower porosity. A 15mm (0.015m) change in water levels across 6900m<sup>2</sup> area with average porosity of 20% equates to approximately 20.7m<sup>3</sup>/day (20,700L) of groundwater inflow. The estimated rate of inflow is equivalent to an annual rate of 7,555m<sup>3</sup>/yr (or 7.6ML/yr). The calculated groundwater inflow is less than Hy-Tec's licensed annual take of groundwater from the pit.

The procedure outlined in the WMP includes incorporation of evaporation data into calculations of water level changes. The monitoring methodology outlined in the WMP was developed on the assumption that water was present in an open lake at the base of the pit. The site conditions at the time of monitoring differed from those inferred when the water inflow measurement procedure was developed. Most of the water in the base of the pit is situated beneath the surface in previously blasted rock. As such, evaporation would be minimal and has been assumed to have not influenced water levels in the pit sump during the monitoring period.

If you have any questions regarding the works outlined in this report please contact the undersigned on 0407 875 302.

Kind Regards

James Morrow

Environmental Engineer Ground Doctor Pty Ltd 2018-GD001-L2v2

Attachment A – Figure

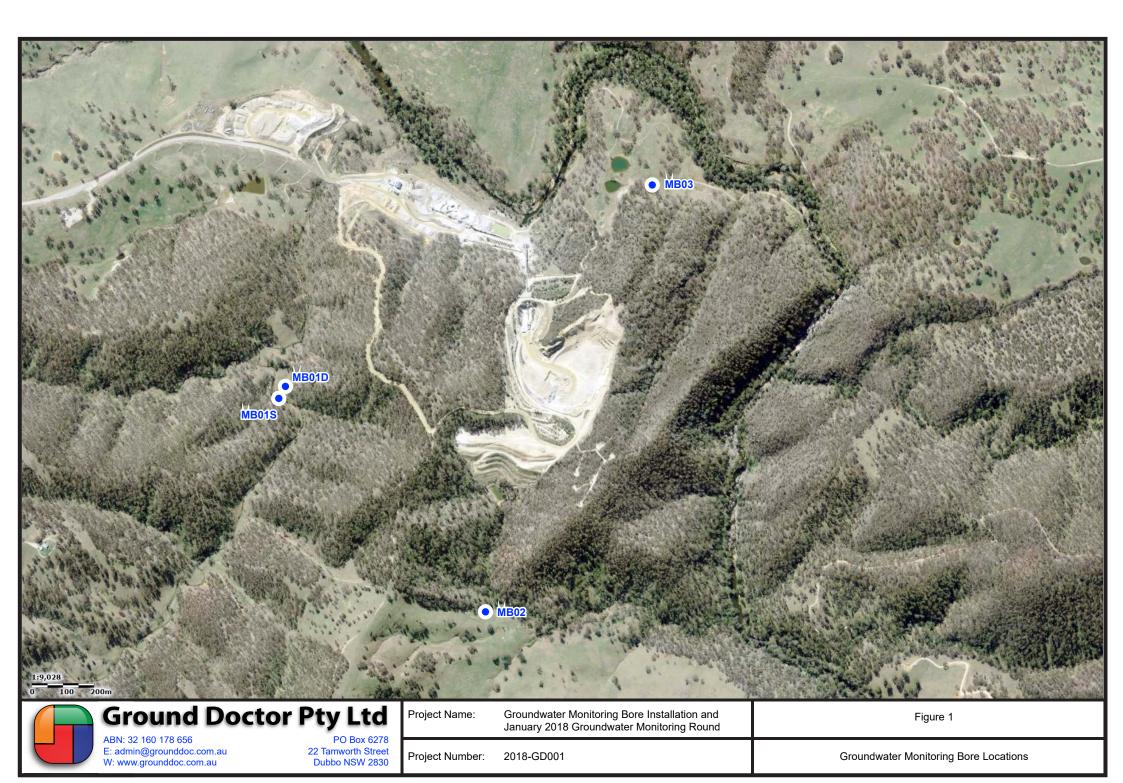
Attachment B – Groundwater Sampling Forms

Attachment C – Water Quality Meter Calibration Record

Attachment D – Groundwater Level Charts

Attachment E – Laboratory Certificate of Analysis

Attachment F – Pit Water Level Monitoring Photographs


Attachment G – Analytical Results Summary Table

### 9 References

• Groundwork Plus (2017), "Austen Quarry Water Management Plan", Report Number 1517\_610\_002\_RPTO\_Water Management Plan\_V8, 10 October 2017

# Attachment A

# Figure



# Attachment B

**Groundwater Sampling Forms** 



| Monitoring Bore ID: | MB01S               |
|---------------------|---------------------|
| Date:               | 21 and 22 June 2018 |

| Depth to Water:       | 4.480m                         |
|-----------------------|--------------------------------|
| Depth to Bottom:      | 7.42m                          |
| Saturated Well Depth: | 2.94m                          |
| Well Volume:          | 5L (Saturated Well Depth x 2L) |

| Purge Volume (L) | Temp (oC) | DO (ppm) | EC (uS/cm) | рН   | ORP (mV) |
|------------------|-----------|----------|------------|------|----------|
| 10L              | 16.5      | 3.71     | 464        | 7.44 | 68       |
| 20L              | 16.5      | 4.67     | 460        | 7.4  | 91       |
| 25L              | 16.5      | 5.41     | 343        | 7.41 | 94       |
|                  |           |          |            |      |          |
|                  |           |          |            |      |          |
|                  |           |          |            |      |          |

| Description of Works / Observations:                                              |  |
|-----------------------------------------------------------------------------------|--|
| Good water inflow but bailed dry after 25L removed.                               |  |
| Groundwater was turbid (grey-brown) during purging.                               |  |
| Groundwater was allowed to settle before sampling to minimise turbidy in samples. |  |
|                                                                                   |  |
|                                                                                   |  |
|                                                                                   |  |



| Monitoring Bore ID: | MB01D               |
|---------------------|---------------------|
| Date:               | 21 and 22 June 2018 |

| Depth to Water:       | 1.94m |
|-----------------------|-------|
| Depth to Bottom:      | 29.3m |
| Saturated Well Depth: | 27.4m |
| Well Volume:          | 55L   |

#### **Field Parameters:**

| Purge Volume (L) | Temp (oC) | DO (ppm) | EC (uS/cm) | рН   | ORP (mV) |
|------------------|-----------|----------|------------|------|----------|
| 55L              | 14.7      | 1.56     | 779        | 7.44 | 85       |
|                  |           |          |            |      |          |
|                  |           |          |            |      |          |
|                  |           |          |            |      |          |
|                  |           |          |            |      |          |
|                  |           |          |            |      |          |

### Description of Works / Observations:

Well bailed dry after 55L removed (well volume)

Water was turbid grey-brown during purging, becoming siltier with increased drawdown.

Well allowed to recover overnight.

Water sampled was clear and colourless (low turbidy).



| Monitoring Bore ID: | MB02                |
|---------------------|---------------------|
| Date:               | 21 and 22 June 2018 |

| Depth to Water:       | 17.535m |
|-----------------------|---------|
| Depth to Bottom:      | 29.10m  |
| Saturated Well Depth: | 11.6m   |
| Well Volume:          | 23.2L   |

#### **Field Parameters:**

| Purge Volume (L) | Temp (oC) | DO (ppm) | EC (uS/cm) | рН   | ORP (mV) |
|------------------|-----------|----------|------------|------|----------|
| 35L              | 12.9      | 5.08     | 927        | 7.32 | 130      |
|                  |           |          |            |      |          |
|                  |           |          |            |      |          |
|                  |           |          |            |      |          |
|                  |           |          |            |      |          |
|                  |           |          |            |      |          |

### Description of Works / Observations:

Well bailed dry after 35L removed (well volume plus annulus volume)

Water was turbid grey during purging, becoming siltier with increased drawdown.

Well allowed to recover overnight.

Water sampled was clear and colourless (low turbidy).



| Monitoring Bore ID: | MB03                |
|---------------------|---------------------|
| Date:               | 21 and 22 June 2018 |

| Depth to Water:       | Well Dry |
|-----------------------|----------|
| Depth to Bottom:      | 25.31m   |
| Saturated Well Depth: | NA       |
| Well Volume:          | ΝΑ       |

| Purge Volume (L) | Temp (oC) | DO (ppm) | EC (uS/cm) | рН | ORP (mV) |
|------------------|-----------|----------|------------|----|----------|
| NA               |           |          |            |    |          |
|                  |           |          |            |    |          |
|                  |           |          |            |    |          |
|                  |           |          |            |    |          |
|                  |           |          |            |    |          |
|                  |           |          |            |    |          |

| Description of Works / Observations: |  |  |  |
|--------------------------------------|--|--|--|
| Well was dry.                        |  |  |  |
|                                      |  |  |  |
|                                      |  |  |  |
|                                      |  |  |  |
|                                      |  |  |  |
|                                      |  |  |  |
|                                      |  |  |  |



| Monitoring Bore ID: | Pit Sump  |
|---------------------|-----------|
| Date:               | 22-Jun-18 |

| Depth to Water:       | ΝΑ |
|-----------------------|----|
| Depth to Bottom:      | NA |
| Saturated Well Depth: | NA |
| Well Volume:          | ΝΑ |

| Purge Volume (L) | Temp (oC) | DO (ppm) | EC (uS/cm) | рН   | ORP (mV) |
|------------------|-----------|----------|------------|------|----------|
| NA               | 7.6       | 6.97     | 357        | 7.01 | 119      |
|                  |           |          |            |      |          |
|                  |           |          |            |      |          |
|                  |           |          |            |      |          |
|                  |           |          |            |      |          |
|                  |           |          |            |      |          |

| Description of Works / Observations:                  |  |
|-------------------------------------------------------|--|
| Water in pit sump was clear and colourless.           |  |
| No hydrocarbon sheen visible on surface of pit water. |  |
| No unnatural odour noted in sampled water.            |  |
|                                                       |  |
|                                                       |  |
|                                                       |  |
|                                                       |  |



| Monitoring Bore ID: | Yorkeys Creek |
|---------------------|---------------|
| Date:               | 22-Jun-18     |

| Depth to Water:       | ΝΑ |
|-----------------------|----|
| Depth to Bottom:      | ΝΑ |
| Saturated Well Depth: | NA |
| Well Volume:          | ΝΑ |

| Purge Volume (L) | Temp (oC) | DO (ppm) | EC (uS/cm) | рН   | ORP (mV) |
|------------------|-----------|----------|------------|------|----------|
| NA               | 6.7       | 12.25    | 353        | 7.93 | 104      |
|                  |           |          |            |      |          |
|                  |           |          |            |      |          |
|                  |           |          |            |      |          |
|                  |           |          |            |      |          |
|                  |           |          |            |      |          |

| Description of Works / Observations:                        |  |  |  |  |
|-------------------------------------------------------------|--|--|--|--|
| Field parametrs measured in Yorkeys Creek adjacent to MB01S |  |  |  |  |
|                                                             |  |  |  |  |
|                                                             |  |  |  |  |
|                                                             |  |  |  |  |
|                                                             |  |  |  |  |
|                                                             |  |  |  |  |
|                                                             |  |  |  |  |

# Attachment C

Water Quality Meter Calibration Form

Instrument **YSI Quatro Pro Plus** Serial No. 09K100887



| ltem          | Test                    | Pass         | Comments |
|---------------|-------------------------|--------------|----------|
| Battery       | Charge Condition        | 1            |          |
|               | Fuses                   | 1            |          |
|               | Capacity                | ✓            |          |
| Switch/keypad | Operation               | 1            |          |
| Display       | Intensity               | 1            |          |
|               | Operation<br>(segments) | 1            |          |
| Grill Filter  | Condition               | ✓            |          |
|               | Seal                    | 1            |          |
| PCB           | Condition               | 1            |          |
| Connectors    | Condition               | 1            |          |
| Sensor        | 1. pH                   | $\checkmark$ |          |
|               | 2. mV                   | $\checkmark$ |          |
|               | 3. EC                   | ✓            |          |
|               | 4. D.O                  | 1            |          |
|               | 5. Temp                 | ✓            |          |
| Alarms        | Beeper                  |              |          |
|               | Settings                |              |          |
| Software      | Version                 | · · · ·      |          |
| Data logger   | Operation               |              |          |
| Download      | Operation               |              |          |
| Other tests:  | 1                       |              |          |

.

### Certificate of Calibration

This is to certify that the above instrument has been calibrated to the following specifications:

| Sensor          | Serial no | Standard Solutions | Certified | Solution Bottle<br>Number | Instrument Reading |
|-----------------|-----------|--------------------|-----------|---------------------------|--------------------|
| 1. pH 10.00     |           | pH 10.00           |           | 309865                    | pH 9.71            |
| 1. pH 7.00      |           | pH 7.00            |           | 307928                    | pH 7.02            |
| 2. pH 4.00      |           | pH 4.00            |           | 307927                    | pH 4.13            |
| 3. mV           |           | 230.8mV            |           | 306014/311901             | 230.8mV            |
| 4. EC           |           | 2.76mS             |           | 306341                    | 2.76mS             |
| 4. LO<br>5. D.O |           | 0.00ppm            |           | 5253                      | 0.00ppm            |
| 6. Temp         |           | 20.5°C             |           | MultiTherm                | 20.2°C             |
| Calibrated by:  |           | SB                 | _Sophie B | Boler                     |                    |

Calibrated by:

15/06/2018

Next calibration due:

Calibration date:

15/07/2018

15/6/18

# Attachment D

**Groundwater Level Chart** 



# Attachment E

Laboratory Certificate of Analysis



#### **CERTIFICATE OF ANALYSIS**

| Work Order              | ES1818613                                                             | Page                    | : 1 of 7                                              |
|-------------------------|-----------------------------------------------------------------------|-------------------------|-------------------------------------------------------|
| Client                  | : HY-TEC INDUSTRIES PTY LTD                                           | Laboratory              | : Environmental Division Sydney                       |
| Contact                 | : MARK TAYLOR                                                         | Contact                 | : Customer Services ES                                |
| Address                 | : GATEWAY BUSINESS PARK 4/63-79 PARRAMATTA RD<br>SILVERWATER NSW 2128 | Address                 | : 277-289 Woodpark Road Smithfield NSW Australia 2164 |
| Telephone               | :                                                                     | Telephone               | : +61-2-8784 8555                                     |
| Project                 | : Hytec Austen Quarry Baseline Groundwater Monitoring                 | Date Samples Received   | : 26-Jun-2018 08:30                                   |
| Order number            | : 2201035512                                                          | Date Analysis Commenced | : 27-Jun-2018                                         |
| C-O-C number            | :                                                                     | Issue Date              | : 02-Jul-2018 18:57                                   |
| Sampler                 | : James Morrow                                                        |                         | Iac-MRA NATA                                          |
| Site                    | :                                                                     |                         |                                                       |
| Quote number            | : EN/222/17                                                           |                         | Accreditation No. 825                                 |
| No. of samples received | : 5                                                                   |                         | Accredited for compliance with                        |
| No. of samples analysed | : 5                                                                   |                         | ISO/IEC 17025 - Testing                               |
|                         |                                                                       |                         |                                                       |

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results
- Surrogate Control Limits

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with Quality Review and Sample Receipt Notification.

#### Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

| Signatories      | Position              | Accreditation Category             |
|------------------|-----------------------|------------------------------------|
| Ankit Joshi      | Inorganic Chemist     | Sydney Inorganics, Smithfield, NSW |
| Celine Conceicao | Senior Spectroscopist | Sydney Inorganics, Smithfield, NSW |
| Edwandy Fadjar   | Organic Coordinator   | Sydney Organics, Smithfield, NSW   |
| Ivan Taylor      | Analyst               | Sydney Inorganics, Smithfield, NSW |



#### **General Comments**

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contact for details.

 Key :
 CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

 LOR = Limit of reporting

^ = This result is computed from individual analyte detections at or above the level of reporting

ø = ALS is not NATA accredited for these tests.

~ = Indicates an estimated value.

- Benzo(a)pyrene Toxicity Equivalent Quotient (TEQ) is the sum total of the concentration of the eight carcinogenic PAHs multiplied by their Toxicity Equivalence Factor (TEF) relative to Benzo(a)pyrene. TEF values are provided in brackets as follows: Benz(a)anthracene (0.1), Chrysene (0.01), Benzo(b+j) & Benzo(k)fluoranthene (0.1), Benzo(a)pyrene (1.0), Indeno(1.2.3.cd)pyrene (0.1), Dibenz(a.h)anthracene (1.0), Benzo(g.h.i)perylene (0.01). Less than LOR results for 'TEQ Zero' are treated as zero.
- Sodium Adsorption Ratio (where reported): Where results for Na, Ca or Mg are <LOR, a concentration at half the reported LOR is incorporated into the SAR calculation. This represents a conservative approach for Na relative to the assumption that <LOR = zero concentration and a conservative approach for Ca & Mg relative to the assumption that <LOR is equivalent to the LOR concentration.</li>



| Sub-Matrix: WATER<br>(Matrix: WATER)   |                        | Clie          | ent sample ID                         | MB01S             | MB01D             | MB02              | Pit               | DUPB              |
|----------------------------------------|------------------------|---------------|---------------------------------------|-------------------|-------------------|-------------------|-------------------|-------------------|
|                                        | C                      | lient samplii | ng date / time                        | 22-Jun-2018 00:00 |
| Compound                               | CAS Number             | LOR           | Unit                                  | ES1818613-001     | ES1818613-002     | ES1818613-003     | ES1818613-004     | ES1818613-005     |
|                                        |                        |               |                                       | Result            | Result            | Result            | Result            | Result            |
| EA015: Total Dissolved Solids dried at | 180 ± 5 °C             |               |                                       |                   |                   |                   |                   |                   |
| Total Dissolved Solids @180°C          |                        | 10            | mg/L                                  | 370               | 753               | 822               | 420               | 416               |
| ED037P: Alkalinity by PC Titrator      |                        |               |                                       |                   |                   |                   |                   |                   |
| Hydroxide Alkalinity as CaCO3          | DMO-210-001            | 1             | mg/L                                  | <1                | <1                | <1                | <1                | <1                |
| Carbonate Alkalinity as CaCO3          | 3812-32-6              | 1             | mg/L                                  | <1                | <1                | <1                | <1                | <1                |
| Bicarbonate Alkalinity as CaCO3        | 71-52-3                | 1             | mg/L                                  | 232               | 335               | 520               | 201               | 197               |
| Total Alkalinity as CaCO3              |                        | 1             | mg/L                                  | 232               | 335               | 520               | 201               | 197               |
| ED040F: Dissolved Major Anions         |                        |               |                                       |                   |                   |                   |                   |                   |
| Silicon                                | 7440-21-3              | 0.05          | mg/L                                  | 10.1              | 31.6              | 11.3              | 19.4              | 19.3              |
| ED041G: Sulfate (Turbidimetric) as SO4 |                        |               | -                                     |                   |                   |                   |                   |                   |
| Sulfate as SO4 - Turbidimetric         | 14808-79-8             | 1             | mg/L                                  | 23                | 248               | 127               | 98                | 98                |
| ED045G: Chloride by Discrete Analyser  |                        |               | , , , , , , , , , , , , , , , , , , , | -<br>             | -                 |                   |                   |                   |
| Chloride                               | 16887-00-6             | 1             | mg/L                                  | 44                | 23                | 78                | 10                | 13                |
|                                        | 10007 00 0             | -             |                                       |                   |                   |                   |                   |                   |
| ED093F: Dissolved Major Cations        | 7440-70-2              | 1             | mg/L                                  | 74                | 150               | 71                | 49                | 50                |
| Magnesium                              | 7440-70-2              | 1             | mg/L                                  | 13                | 15                | 31                | 26                | 25                |
| Sodium                                 | 7439-95-4              | 1             | mg/L                                  | 22                | 59                | 190               | 25                | 25                |
| Potassium                              | 7440-23-5              | 1             | mg/L                                  | 1                 | 1                 | 2                 | 3                 | 3                 |
|                                        | 7440-09-7              | 1             | ing/E                                 | •                 | •                 | -                 | Ŭ                 | Ŭ                 |
| EG020F: Dissolved Metals by ICP-MS     | 7400.00 5              | 0.01          | mg/L                                  | <0.01             | <0.01             | <0.01             | <0.01             | <0.01             |
| Arsenic                                | 7429-90-5<br>7440-38-2 | 0.001         | mg/L                                  | 0.001             | 0.005             | 0.004             | <0.001            | <0.01             |
| Beryllium                              |                        | 0.001         | mg/L                                  | <0.001            | <0.001            | <0.004            | <0.001            | <0.001            |
| Barium                                 | 7440-41-7<br>7440-39-3 | 0.001         | mg/L                                  | 0.013             | 0.055             | 0.085             | 0.029             | 0.029             |
| Cadmium                                | 7440-39-3              |               | mg/L                                  | <0.0001           | <0.0001           | <0.0001           | 0.0019            | 0.020             |
| Chromium                               | 7440-43-9              | 0.0001        | mg/L                                  | <0.0001           | <0.0001           | <0.001            | < 0.001           | < 0.001           |
| Cobalt                                 | 7440-47-3              | 0.001         | mg/L                                  | <0.001            | 0.003             | <0.001            | <0.001            | <0.001            |
| Copper                                 | 7440-48-4              | 0.001         | mg/L                                  | <0.001            | <0.001            | <0.001            | <0.001            | <0.001            |
| Lead                                   | 7440-50-8              | 0.001         | mg/L                                  | <0.001            | <0.001            | <0.001            | <0.001            | <0.001            |
| Manganese                              | 7439-92-1              | 0.001         | mg/L                                  | 0.153             | 0.530             | 0.046             | 0.188             | 0.196             |
| Molybdenum                             | 7439-98-7              | 0.001         | mg/L                                  | <0.001            | 0.004             | 0.002             | < 0.001           | <0.001            |
| Nickel                                 | 7440-02-0              | 0.001         | mg/L                                  | <0.001            | 0.003             | 0.002             | 0.001             | 0.002             |
| Selenium                               | 7782-49-2              | 0.01          | mg/L                                  | <0.01             | <0.01             | <0.01             | <0.01             | < 0.01            |
| Silver                                 | 7440-22-4              | 0.001         | mg/L                                  | <0.001            | <0.001            | <0.001            | <0.001            | < 0.001           |
| Strontium                              | 7440-24-6              | 0.001         | mg/L                                  | 0.245             | 0.897             | 3.01              | 0.231             | 0.233             |
| Titanium                               | 7440-32-6              | 0.01          | mg/L                                  | <0.01             | <0.01             | <0.01             | <0.01             | < 0.01            |



| Sub-Matrix: WATER<br>(Matrix: WATER)                  |                         | Clie         | ent sample ID  | MB01S             | MB01D             | MB02              | Pit               | DUPB              |
|-------------------------------------------------------|-------------------------|--------------|----------------|-------------------|-------------------|-------------------|-------------------|-------------------|
|                                                       | Cl                      | lient sampli | ng date / time | 22-Jun-2018 00:00 |
| Compound                                              | CAS Number              | LOR          | Unit           | ES1818613-001     | ES1818613-002     | ES1818613-003     | ES1818613-004     | ES1818613-005     |
|                                                       |                         |              |                | Result            | Result            | Result            | Result            | Result            |
| G020F: Dissolved Metals by IC                         | P-MS - Continued        |              |                |                   |                   |                   |                   |                   |
| Vanadium                                              | 7440-62-2               | 0.01         | mg/L           | <0.01             | <0.01             | <0.01             | <0.01             | <0.01             |
| Zinc                                                  | 7440-66-6               | 0.005        | mg/L           | <0.005            | 0.006             | <0.005            | 0.160             | 0.164             |
| Boron                                                 | 7440-42-8               | 0.05         | mg/L           | <0.05             | 0.32              | 0.27              | <0.05             | <0.05             |
| Iron                                                  | 7439-89-6               | 0.05         | mg/L           | <0.05             | <0.05             | <0.05             | <0.05             | <0.05             |
| G035F: Dissolved Mercury by                           | FIMS                    |              |                |                   |                   |                   |                   |                   |
| Mercury                                               | 7439-97-6               | 0.0001       | mg/L           | <0.0001           | <0.0001           | <0.0001           | <0.0001           | <0.0001           |
| K055G: Ammonia as N by Disc                           |                         |              |                |                   |                   |                   |                   |                   |
| Ammonia as N                                          | 7664-41-7               | 0.01         | mg/L           | 0.05              | 0.02              | 0.08              | 0.05              | 0.05              |
| K057G: Nitrite as N by Discret                        |                         |              |                |                   |                   |                   |                   |                   |
| Nitrite as N                                          | 14797-65-0              | 0.01         | mg/L           | <0.01             | <0.01             | <0.01             | <0.01             | <0.01             |
| K058G: Nitrate as N by Discre                         |                         |              |                |                   |                   |                   |                   |                   |
| Nitrate as N                                          | 14797-55-8              | 0.01         | mg/L           | <0.01             | <0.01             | <0.01             | 0.48              | 0.48              |
|                                                       |                         |              |                |                   |                   |                   |                   | 0.10              |
| K059G: Nitrite plus Nitrate as Nitrite + Nitrate as N | N (NOX) by Discrete Ana | 0.01         | mg/L           | <0.01             | <0.01             | <0.01             | 0.48              | 0.48              |
|                                                       |                         | 0.01         | mg/L           | <b>VO.01</b>      | -0.01             | 40.01             | 0.40              | 0.40              |
| N055: Ionic Balance<br>Total Anions                   |                         | 0.01         | meq/L          | 6.36              | 12.5              | 15.2              | 6.34              | 6.34              |
| Total Cations                                         |                         | 0.01         | · · ·          | 5.74              | 12.5              | 13.2              | 5.75              | 5.72              |
| Ionic Balance                                         |                         | 0.01         | meq/L<br>%     | 5.04              | 5.01              | 2.78              | 4.88              | 5.19              |
|                                                       |                         | 0.01         | 70             | 5.04              | 5.01              | 2.70              | 4.00              | 5.19              |
| P075(SIM)B: Polynuclear Aron                          |                         | 10           |                |                   |                   |                   | <1.0              | <1.0              |
| Naphthalene                                           | 91-20-3                 | 1.0          | µg/L           |                   |                   |                   | <1.0              | <1.0              |
| Acenaphthylene                                        | 208-96-8                | 1.0          | µg/L           |                   |                   |                   |                   |                   |
| Acenaphthene                                          | 83-32-9                 | 1.0          | µg/L           |                   |                   |                   | <1.0              | <1.0              |
| Fluorene                                              | 86-73-7                 | 1.0          | µg/L           |                   |                   |                   | <1.0              | <1.0              |
| Phenanthrene                                          | 85-01-8                 | 1.0          | μg/L           |                   |                   |                   | <1.0              |                   |
| Anthracene                                            | 120-12-7                | 1.0<br>1.0   | μg/L<br>μg/L   |                   |                   |                   | <1.0              | <1.0              |
| Fluoranthene                                          | 206-44-0                | 1.0          |                |                   |                   |                   | <1.0              | <1.0              |
| Pyrene<br>Benz(a)anthracene                           | 129-00-0                | 1.0          | µg/L           |                   |                   |                   | <1.0              | <1.0              |
|                                                       | 56-55-3                 | 1.0          | μg/L<br>μg/L   |                   |                   |                   | <1.0              | <1.0              |
| Chrysene<br>Benzo(b+j)fluoranthene                    | 218-01-9                | 1.0          |                |                   |                   |                   | <1.0              | <1.0              |
| Benzo(k)fluoranthene                                  | 205-99-2 205-82-3       | 1.0          | µg/L           |                   |                   |                   | <1.0              | <1.0              |
|                                                       | 207-08-9                | 0.5          | µg/L           |                   |                   |                   | <0.5              | <1.0              |
| Benzo(a)pyrene<br>Indeno(1.2.3.cd)pyrene              | 50-32-8                 | 0.5          | µg/L           |                   |                   |                   | <0.5              | <0.5              |
|                                                       | 193-39-5                |              | µg/L           |                   |                   |                   | <1.0              | <1.0              |
| Dibenz(a.h)anthracene                                 | 53-70-3                 | 1.0          | µg/L           |                   |                   |                   | <1.U              | <1.0              |



| Sub-Matrix: WATER<br>(Matrix: WATER)    |                   | Clie         | ent sample ID  | MB01S             | MB01D             | MB02              | Pit               | DUPB              |
|-----------------------------------------|-------------------|--------------|----------------|-------------------|-------------------|-------------------|-------------------|-------------------|
|                                         | Ci                | lient sampli | ng date / time | 22-Jun-2018 00:00 |
| Compound                                | CAS Number        | LOR          | Unit           | ES1818613-001     | ES1818613-002     | ES1818613-003     | ES1818613-004     | ES1818613-005     |
|                                         |                   |              |                | Result            | Result            | Result            | Result            | Result            |
| EP075(SIM)B: Polynuclear Aromatic Hy    | drocarbons - Con  | tinued       |                |                   |                   |                   |                   |                   |
| Benzo(g.h.i)perylene                    | 191-24-2          | 1.0          | µg/L           |                   |                   |                   | <1.0              | <1.0              |
| Sum of polycyclic aromatic hydrocarbons |                   | 0.5          | μg/L           |                   |                   |                   | <0.5              | <0.5              |
| Benzo(a)pyrene TEQ (zero)               |                   | 0.5          | μg/L           |                   |                   |                   | <0.5              | <0.5              |
| EP080/071: Total Petroleum Hydrocarbo   | ons               |              |                |                   |                   |                   |                   |                   |
| C6 - C9 Fraction                        |                   | 20           | µg/L           |                   |                   |                   | <20               | <20               |
| C10 - C14 Fraction                      |                   | 50           | µg/L           |                   |                   |                   | <50               | <50               |
| C15 - C28 Fraction                      |                   | 100          | μg/L           |                   |                   |                   | <100              | <100              |
| C29 - C36 Fraction                      |                   | 50           | μg/L           |                   |                   |                   | <50               | <50               |
| C10 - C36 Fraction (sum)                |                   | 50           | µg/L           |                   |                   |                   | <50               | <50               |
| EP080/071: Total Recoverable Hydroca    | rbons - NEPM 201  | 3 Fractio    | ns             |                   |                   |                   |                   |                   |
| C6 - C10 Fraction                       | C6_C10            | 20           | µg/L           |                   |                   |                   | <20               | <20               |
| C6 - C10 Fraction minus BTEX            | <br>C6_C10-BTEX   | 20           | μg/L           |                   |                   |                   | <20               | <20               |
| (F1)                                    | -                 |              |                |                   |                   |                   |                   |                   |
| >C10 - C16 Fraction                     |                   | 100          | μg/L           |                   |                   |                   | <100              | <100              |
| >C16 - C34 Fraction                     |                   | 100          | μg/L           |                   |                   |                   | <100              | <100              |
| >C34 - C40 Fraction                     |                   | 100          | μg/L           |                   |                   |                   | <100              | <100              |
| >C10 - C40 Fraction (sum)               |                   | 100          | µg/L           |                   |                   |                   | <100              | <100              |
| >C10 - C16 Fraction minus Naphthalene   |                   | 100          | µg/L           |                   |                   |                   | <100              | <100              |
| (F2)                                    |                   |              |                |                   |                   |                   |                   |                   |
| EP080: BTEXN                            |                   |              |                |                   |                   |                   |                   |                   |
| Benzene                                 | 71-43-2           | 1            | μg/L           |                   |                   |                   | <1                | <1                |
| Toluene                                 | 108-88-3          | 2            | μg/L           |                   |                   |                   | <2                | <2                |
| Ethylbenzene                            | 100-41-4          | 2            | µg/L           |                   |                   |                   | <2                | <2                |
| meta- & para-Xylene                     | 108-38-3 106-42-3 | 2            | µg/L           |                   |                   |                   | <2                | <2                |
| ortho-Xylene                            | 95-47-6           | 2            | µg/L           |                   |                   |                   | <2                | <2                |
| Total Xylenes                           |                   | 2            | µg/L           |                   |                   |                   | <2                | <2                |
| Sum of BTEX                             |                   | 1            | µg/L           |                   |                   |                   | <1                | <1                |
| Naphthalene                             | 91-20-3           | 5            | μg/L           |                   |                   |                   | <5                | <5                |
| P075(SIM)S: Phenolic Compound Sur       | rogates           |              |                |                   |                   |                   |                   |                   |
| Phenol-d6                               | 13127-88-3        | 1.0          | %              |                   |                   |                   | 21.4              | 17.6              |
| 2-Chlorophenol-D4                       | 93951-73-6        | 1.0          | %              |                   |                   |                   | 55.9              | 47.2              |
| 2.4.6-Tribromophenol                    | 118-79-6          | 1.0          | %              |                   |                   |                   | 49.7              | 49.0              |
| EP075(SIM)T: PAH Surrogates             |                   |              |                |                   |                   |                   |                   |                   |
| 2-Fluorobiphenyl                        | 321-60-8          | 1.0          | %              |                   |                   |                   | 76.4              | 87.1              |



| Sub-Matrix: WATER<br>(Matrix: WATER) |            | Clie       | ent sample ID  | MB01S             | MB01D             | MB02              | Pit               | DUPB              |
|--------------------------------------|------------|------------|----------------|-------------------|-------------------|-------------------|-------------------|-------------------|
|                                      | Cli        | ent sampli | ng date / time | 22-Jun-2018 00:00 |
| Compound                             | CAS Number | LOR        | Unit           | ES1818613-001     | ES1818613-002     | ES1818613-003     | ES1818613-004     | ES1818613-005     |
|                                      |            |            |                | Result            | Result            | Result            | Result            | Result            |
| EP075(SIM)T: PAH Surrogates - Co     | ntinued    |            |                |                   |                   |                   |                   |                   |
| Anthracene-d10                       | 1719-06-8  | 1.0        | %              |                   |                   |                   | 86.6              | 65.8              |
| 4-Terphenyl-d14                      | 1718-51-0  | 1.0        | %              |                   |                   |                   | 91.0              | 76.6              |
| EP080S: TPH(V)/BTEX Surrogates       |            |            |                |                   |                   |                   |                   |                   |
| 1.2-Dichloroethane-D4                | 17060-07-0 | 2          | %              |                   |                   |                   | 106               | 99.4              |
| Toluene-D8                           | 2037-26-5  | 2          | %              |                   |                   |                   | 100               | 86.6              |
| 4-Bromofluorobenzene                 | 460-00-4   | 2          | %              |                   |                   |                   | 94.2              | 91.7              |



#### Surrogate Control Limits

| Sub-Matrix: WATER              |            | Recover | y Limits (%) |
|--------------------------------|------------|---------|--------------|
| Compound                       | CAS Number | Low     | High         |
| EP075(SIM)S: Phenolic Compound | Surrogates |         |              |
| Phenol-d6                      | 13127-88-3 | 10      | 44           |
| 2-Chlorophenol-D4              | 93951-73-6 | 14      | 94           |
| 2.4.6-Tribromophenol           | 118-79-6   | 17      | 125          |
| EP075(SIM)T: PAH Surrogates    |            |         |              |
| 2-Fluorobiphenyl               | 321-60-8   | 20      | 104          |
| Anthracene-d10                 | 1719-06-8  | 27      | 113          |
| 4-Terphenyl-d14                | 1718-51-0  | 32      | 112          |
| EP080S: TPH(V)/BTEX Surrogates |            |         |              |
| 1.2-Dichloroethane-D4          | 17060-07-0 | 71      | 137          |
| Toluene-D8                     | 2037-26-5  | 79      | 131          |
| 4-Bromofluorobenzene           | 460-00-4   | 70      | 128          |



### **QUALITY CONTROL REPORT**

| Work Order              | : ES1818613                                                           | Page                    | : 1 of 10                                             |
|-------------------------|-----------------------------------------------------------------------|-------------------------|-------------------------------------------------------|
| Client                  | : HY-TEC INDUSTRIES PTY LTD                                           | Laboratory              | : Environmental Division Sydney                       |
| Contact                 | : MARK TAYLOR                                                         | Contact                 | : Customer Services ES                                |
| Address                 | : GATEWAY BUSINESS PARK 4/63-79 PARRAMATTA RD<br>SILVERWATER NSW 2128 | Address                 | : 277-289 Woodpark Road Smithfield NSW Australia 2164 |
| Telephone               | :                                                                     | Telephone               | : +61-2-8784 8555                                     |
| Project                 | : Hytec Austen Quarry Baseline Groundwater Monitoring                 | Date Samples Received   | : 26-Jun-2018                                         |
| Order number            | : 2201035512                                                          | Date Analysis Commenced | : 27-Jun-2018                                         |
| C-O-C number            | :                                                                     | Issue Date              | : 02-Jul-2018                                         |
| Sampler                 | : James Morrow                                                        |                         | Iac-MRA NATA                                          |
| Site                    | :                                                                     |                         |                                                       |
| Quote number            | : EN/222/17                                                           |                         | Accreditation No. 825                                 |
| No. of samples received | : 5                                                                   |                         | Accredited for compliance with                        |
| No. of samples analysed | : 5                                                                   |                         | ISO/IEC 17025 - Testing                               |

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full. This Quality Control Report contains the following information:

- Laboratory Duplicate (DUP) Report; Relative Percentage Difference (RPD) and Acceptance Limits
- Method Blank (MB) and Laboratory Control Spike (LCS) Report; Recovery and Acceptance Limits
- Matrix Spike (MS) Report; Recovery and Acceptance Limits

#### Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

| Signatories      | Position              | Accreditation Category             |
|------------------|-----------------------|------------------------------------|
| Ankit Joshi      | Inorganic Chemist     | Sydney Inorganics, Smithfield, NSW |
| Celine Conceicao | Senior Spectroscopist | Sydney Inorganics, Smithfield, NSW |
| Edwandy Fadjar   | Organic Coordinator   | Sydney Organics, Smithfield, NSW   |
| Ivan Taylor      | Analyst               | Sydney Inorganics, Smithfield, NSW |
|                  |                       |                                    |



#### **General Comments**

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis. Where the LOR of a reported result differs from standard LOR, this may be due to high

Key: Anonymous = Refers to samples which are not specifically part of this work order but formed part of the QC process lot

- CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.
- LOR = Limit of reporting
- RPD = Relative Percentage Difference
- # = Indicates failed QC

#### Laboratory Duplicate (DUP) Report

The quality control term Laboratory Duplicate refers to a randomly selected intralaboratory split. Laboratory duplicates provide information regarding method precision and sample heterogeneity. The permitted ranges for the Relative Percent Deviation (RPD) of Laboratory Duplicates are specified in ALS Method QWI-EN/38 and are dependent on the magnitude of results in comparison to the level of reporting: Result < 10 times LOR: No Limit; Result between 10 and 20 times LOR: 0% - 50%; Result > 20 times LOR: 0% - 20%.

| Sub-Matrix: WATER    |                           |                                          |             |      |      | Laboratory I    | Duplicate (DUP) Report |         |                     |
|----------------------|---------------------------|------------------------------------------|-------------|------|------|-----------------|------------------------|---------|---------------------|
| Laboratory sample ID | Client sample ID          | Method: Compound                         | CAS Number  | LOR  | Unit | Original Result | Duplicate Result       | RPD (%) | Recovery Limits (%) |
| EA015: Total Dissol  | ved Solids dried at 180   | ± 5 °C (QC Lot: 1764300)                 |             |      |      |                 |                        |         |                     |
| ES1818571-022        | Anonymous                 | EA015H: Total Dissolved Solids @180°C    |             | 10   | mg/L | 1230            | 1360                   | 9.59    | 0% - 20%            |
| ED037P: Alkalinity b | by PC Titrator (QC Lot:   | 1757047)                                 |             |      |      |                 |                        |         |                     |
| ES1818613-004        | Pit                       | ED037-P: Hydroxide Alkalinity as CaCO3   | DMO-210-001 | 1    | mg/L | <1              | <1                     | 0.00    | No Limit            |
|                      |                           | ED037-P: Carbonate Alkalinity as CaCO3   | 3812-32-6   | 1    | mg/L | <1              | <1                     | 0.00    | No Limit            |
|                      |                           | ED037-P: Bicarbonate Alkalinity as CaCO3 | 71-52-3     | 1    | mg/L | 201             | 199                    | 0.884   | 0% - 20%            |
|                      |                           | ED037-P: Total Alkalinity as CaCO3       |             | 1    | mg/L | 201             | 199                    | 0.884   | 0% - 20%            |
| ES1818579-042        | Anonymous                 | ED037-P: Hydroxide Alkalinity as CaCO3   | DMO-210-001 | 1    | mg/L | <1              | <1                     | 0.00    | No Limit            |
|                      |                           | ED037-P: Carbonate Alkalinity as CaCO3   | 3812-32-6   | 1    | mg/L | <1              | <1                     | 0.00    | No Limit            |
|                      |                           | ED037-P: Bicarbonate Alkalinity as CaCO3 | 71-52-3     | 1    | mg/L | 1910            | 1910                   | 0.00    | 0% - 20%            |
|                      |                           | ED037-P: Total Alkalinity as CaCO3       |             | 1    | mg/L | 1910            | 1910                   | 0.00    | 0% - 20%            |
| ED040F: Dissolved    | Major Anions (QC Lot:     | 1757544)                                 |             |      |      |                 |                        |         |                     |
| ES1818613-001        | MB01S                     | ED040F: Silicon                          | 7440-21-3   | 0.05 | mg/L | 10.1            | 9.94                   | 1.33    | 0% - 20%            |
| ES1817359-003        | Anonymous                 | ED040F: Silicon                          | 7440-21-3   | 0.05 | mg/L | 1.56            | 1.56                   | 0.00    | 0% - 20%            |
| ED041G: Sulfate (Tu  | urbidimetric) as SO4 2- b | by DA (QC Lot: 1757543)                  |             |      |      |                 |                        |         |                     |
| ES1818613-003        | MB02                      | ED041G: Sulfate as SO4 - Turbidimetric   | 14808-79-8  | 1    | mg/L | 127             | 108                    | 16.0    | 0% - 20%            |
| ES1817359-003        | Anonymous                 | ED041G: Sulfate as SO4 - Turbidimetric   | 14808-79-8  | 1    | mg/L | 47              | 45                     | 4.28    | 0% - 20%            |
| ED045G: Chloride b   | y Discrete Analyser (Q    | C Lot: 1757542)                          |             |      |      |                 |                        |         |                     |
| ES1818491-003        | Anonymous                 | ED045G: Chloride                         | 16887-00-6  | 1    | mg/L | 3               | 3                      | 0.00    | No Limit            |
| ES1817359-003        | Anonymous                 | ED045G: Chloride                         | 16887-00-6  | 1    | mg/L | 35              | 36                     | 0.00    | 0% - 20%            |
| ED093F: Dissolved    | Major Cations (QC Lot:    | 1757198)                                 |             |      |      |                 |                        |         |                     |
| ES1818340-001        | Anonymous                 | ED093F: Calcium                          | 7440-70-2   | 1    | mg/L | 300             | 298                    | 0.826   | 0% - 20%            |
|                      |                           | ED093F: Magnesium                        | 7439-95-4   | 1    | mg/L | 20              | 20                     | 0.00    | 0% - 50%            |
|                      |                           | ED093F: Sodium                           | 7440-23-5   | 1    | mg/L | 632             | 641                    | 1.30    | 0% - 20%            |
|                      |                           | ED093F: Potassium                        | 7440-09-7   | 1    | mg/L | 2               | 2                      | 0.00    | No Limit            |

| Page       | : 3 of 10                                             |
|------------|-------------------------------------------------------|
| Work Order | : ES1818613                                           |
| Client     | : HY-TEC INDUSTRIES PTY LTD                           |
| Project    | : Hytec Austen Quarry Baseline Groundwater Monitoring |



| ub-Matrix: WATER     |                        |                      |            |        | Laboratory Duplicate (DUP) Report |                 |                  |         |                     |  |  |
|----------------------|------------------------|----------------------|------------|--------|-----------------------------------|-----------------|------------------|---------|---------------------|--|--|
| Laboratory sample ID | Client sample ID       | Method: Compound     | CAS Number | LOR    | Unit                              | Original Result | Duplicate Result | RPD (%) | Recovery Limits (%) |  |  |
| D093F: Dissolved I   | Major Cations (QC Lot: | 1757198) - continued |            |        |                                   |                 |                  |         |                     |  |  |
| ES1818574-002        | Anonymous              | ED093F: Calcium      | 7440-70-2  | 1      | mg/L                              | 13              | 13               | 0.00    | 0% - 50%            |  |  |
|                      |                        | ED093F: Magnesium    | 7439-95-4  | 1      | mg/L                              | 15              | 14               | 0.00    | 0% - 50%            |  |  |
|                      |                        | ED093F: Sodium       | 7440-23-5  | 1      | mg/L                              | 84              | 84               | 0.00    | 0% - 20%            |  |  |
|                      |                        | ED093F: Potassium    | 7440-09-7  | 1      | mg/L                              | 4               | 4                | 0.00    | No Limit            |  |  |
| G020F: Dissolved I   | Metals by ICP-MS (QC I | Lot: 1757199)        |            |        |                                   |                 |                  |         |                     |  |  |
| ES1818340-001        | Anonymous              | EG020A-F: Cadmium    | 7440-43-9  | 0.0001 | mg/L                              | <0.0001         | <0.0001          | 0.00    | No Limit            |  |  |
|                      |                        | EG020A-F: Arsenic    | 7440-38-2  | 0.001  | mg/L                              | 0.003           | 0.003            | 0.00    | No Limit            |  |  |
|                      |                        | EG020A-F: Beryllium  | 7440-41-7  | 0.001  | mg/L                              | <0.001          | <0.001           | 0.00    | No Limit            |  |  |
|                      |                        | EG020A-F: Barium     | 7440-39-3  | 0.001  | mg/L                              | 0.114           | 0.113            | 1.14    | 0% - 20%            |  |  |
|                      |                        | EG020A-F: Chromium   | 7440-47-3  | 0.001  | mg/L                              | <0.001          | <0.001           | 0.00    | No Limit            |  |  |
|                      |                        | EG020A-F: Cobalt     | 7440-48-4  | 0.001  | mg/L                              | <0.001          | <0.001           | 0.00    | No Limit            |  |  |
|                      |                        | EG020A-F: Copper     | 7440-50-8  | 0.001  | mg/L                              | <0.001          | <0.001           | 0.00    | No Limit            |  |  |
|                      |                        | EG020A-F: Lead       | 7439-92-1  | 0.001  | mg/L                              | <0.001          | <0.001           | 0.00    | No Limit            |  |  |
|                      |                        | EG020A-F: Manganese  | 7439-96-5  | 0.001  | mg/L                              | 0.323           | 0.324            | 0.411   | 0% - 20%            |  |  |
|                      |                        | EG020A-F: Molybdenum | 7439-98-7  | 0.001  | mg/L                              | 0.005           | 0.005            | 0.00    | No Limit            |  |  |
|                      |                        | EG020A-F: Nickel     | 7440-02-0  | 0.001  | mg/L                              | 0.002           | 0.002            | 0.00    | No Limit            |  |  |
|                      |                        | EG020A-F: Zinc       | 7440-66-6  | 0.005  | mg/L                              | <0.005          | <0.005           | 0.00    | No Limit            |  |  |
|                      |                        | EG020A-F: Aluminium  | 7429-90-5  | 0.01   | mg/L                              | <0.01           | <0.01            | 0.00    | No Limit            |  |  |
|                      |                        | EG020A-F: Selenium   | 7782-49-2  | 0.01   | mg/L                              | <0.01           | <0.01            | 0.00    | No Limit            |  |  |
|                      |                        | EG020A-F: Vanadium   | 7440-62-2  | 0.01   | mg/L                              | <0.01           | <0.01            | 0.00    | No Limit            |  |  |
|                      |                        | EG020A-F: Boron      | 7440-42-8  | 0.05   | mg/L                              | 1.24            | 1.27             | 3.06    | 0% - 20%            |  |  |
|                      |                        | EG020A-F: Iron       | 7439-89-6  | 0.05   | mg/L                              | 0.12            | 0.12             | 0.00    | No Limit            |  |  |
| ES1818574-002        | Anonymous              | EG020A-F: Cadmium    | 7440-43-9  | 0.0001 | mg/L                              | < 0.0001        | <0.0001          | 0.00    | No Limit            |  |  |
|                      |                        | EG020A-F: Arsenic    | 7440-38-2  | 0.001  | mg/L                              | <0.001          | <0.001           | 0.00    | No Limit            |  |  |
|                      |                        | EG020A-F: Beryllium  | 7440-41-7  | 0.001  | mg/L                              | <0.001          | <0.001           | 0.00    | No Limit            |  |  |
|                      |                        | EG020A-F: Barium     | 7440-39-3  | 0.001  | mg/L                              | 0.029           | 0.029            | 0.00    | 0% - 20%            |  |  |
|                      |                        | EG020A-F: Chromium   | 7440-47-3  | 0.001  | mg/L                              | <0.001          | <0.001           | 0.00    | No Limit            |  |  |
|                      |                        | EG020A-F: Cobalt     | 7440-48-4  | 0.001  | mg/L                              | <0.001          | <0.001           | 0.00    | No Limit            |  |  |
|                      |                        | EG020A-F: Copper     | 7440-50-8  | 0.001  | mg/L                              | <0.001          | <0.001           | 0.00    | No Limit            |  |  |
|                      |                        | EG020A-F: Lead       | 7439-92-1  | 0.001  | mg/L                              | <0.001          | <0.001           | 0.00    | No Limit            |  |  |
|                      |                        | EG020A-F: Manganese  | 7439-96-5  | 0.001  | mg/L                              | 0.019           | 0.019            | 0.00    | 0% - 50%            |  |  |
|                      |                        | EG020A-F: Molybdenum | 7439-98-7  | 0.001  | mg/L                              | <0.001          | <0.001           | 0.00    | No Limit            |  |  |
|                      |                        | EG020A-F: Nickel     | 7440-02-0  | 0.001  | mg/L                              | <0.001          | <0.001           | 0.00    | No Limit            |  |  |
|                      |                        | EG020A-F: Zinc       | 7440-66-6  | 0.005  | mg/L                              | < 0.005         | <0.005           | 0.00    | No Limit            |  |  |
|                      |                        | EG020A-F: Aluminium  | 7429-90-5  | 0.01   | mg/L                              | 0.02            | 0.02             | 0.00    | No Limit            |  |  |
|                      |                        | EG020A-F: Selenium   | 7782-49-2  | 0.01   | mg/L                              | <0.01           | <0.01            | 0.00    | No Limit            |  |  |
|                      |                        | EG020A-F: Vanadium   | 7440-62-2  | 0.01   | mg/L                              | < 0.01          | <0.01            | 0.00    | No Limit            |  |  |
|                      |                        | EG020A-F: Boron      | 7440-42-8  | 0.05   | mg/L                              | 0.09            | 0.10             | 0.00    | No Limit            |  |  |
|                      |                        | EG020A-F: Iron       | 7439-89-6  | 0.05   | mg/L                              | 0.09            | 0.09             | 0.00    | No Limit            |  |  |

| Page       | : 4 of 10                                             |
|------------|-------------------------------------------------------|
| Work Order | : ES1818613                                           |
| Client     | : HY-TEC INDUSTRIES PTY LTD                           |
| Project    | : Hytec Austen Quarry Baseline Groundwater Monitoring |



| Sub-Matrix: WATER    |                              |                                                    |            |        | Laboratory Duplicate (DUP) Report |                   |                  |         |                     |  |  |
|----------------------|------------------------------|----------------------------------------------------|------------|--------|-----------------------------------|-------------------|------------------|---------|---------------------|--|--|
| Laboratory sample ID | Client sample ID             | Method: Compound                                   | CAS Number | LOR    | Unit                              | Original Result   | Duplicate Result | RPD (%) | Recovery Limits (%) |  |  |
| EG020F: Dissolved    | Metals by ICP-MS (QC Lot     | : 1757200) - continued                             |            |        |                                   |                   |                  |         |                     |  |  |
| ES1818471-001        | Anonymous                    | EG020B-F: Silver                                   | 7440-22-4  | 0.001  | mg/L                              | <0.001            | <0.001           | 0.00    | No Limit            |  |  |
|                      |                              | EG020B-F: Strontium                                | 7440-24-6  | 0.001  | mg/L                              | 0.866             | 0.856            | 1.28    | 0% - 20%            |  |  |
|                      |                              | EG020B-F: Titanium                                 | 7440-32-6  | 0.01   | mg/L                              | <0.01             | <0.01            | 0.00    | No Limit            |  |  |
| EG020F: Dissolved    | Metals by ICP-MS (QC Lot     | : 1757202)                                         |            |        |                                   |                   |                  |         |                     |  |  |
| ES1818613-003        | MB02                         | EG020A-F: Cadmium                                  | 7440-43-9  | 0.0001 | mg/L                              | <0.0001           | <0.0001          | 0.00    | No Limit            |  |  |
|                      |                              | EG020A-F: Arsenic                                  | 7440-38-2  | 0.001  | mg/L                              | 0.004             | 0.004            | 0.00    | No Limit            |  |  |
|                      |                              | EG020A-F: Beryllium                                | 7440-41-7  | 0.001  | mg/L                              | <0.001            | <0.001           | 0.00    | No Limit            |  |  |
|                      |                              | EG020A-F: Barium                                   | 7440-39-3  | 0.001  | mg/L                              | 0.085             | 0.085            | 0.00    | 0% - 20%            |  |  |
|                      |                              | EG020A-F: Chromium                                 | 7440-47-3  | 0.001  | mg/L                              | <0.001            | <0.001           | 0.00    | No Limit            |  |  |
|                      |                              | EG020A-F: Cobalt                                   | 7440-48-4  | 0.001  | mg/L                              | <0.001            | <0.001           | 0.00    | No Limit            |  |  |
|                      |                              | EG020A-F: Copper                                   | 7440-50-8  | 0.001  | mg/L                              | <0.001            | <0.001           | 0.00    | No Limit            |  |  |
|                      |                              | EG020A-F: Lead                                     | 7439-92-1  | 0.001  | mg/L                              | <0.001            | <0.001           | 0.00    | No Limit            |  |  |
|                      |                              | EG020A-F: Manganese                                | 7439-96-5  | 0.001  | mg/L                              | 0.046             | 0.049            | 5.76    | 0% - 20%            |  |  |
|                      |                              | EG020A-F: Molybdenum                               | 7439-98-7  | 0.001  | mg/L                              | 0.002             | 0.002            | 0.00    | No Limit            |  |  |
|                      |                              | EG020A-F: Nickel                                   | 7440-02-0  | 0.001  | mg/L                              | 0.002             | 0.001            | 0.00    | No Limit            |  |  |
|                      |                              | EG020A-F: Zinc                                     | 7440-66-6  | 0.005  | mg/L                              | <0.005            | <0.005           | 0.00    | No Limit            |  |  |
|                      |                              | EG020A-F: Aluminium                                | 7429-90-5  | 0.01   | mg/L                              | <0.01             | <0.01            | 0.00    | No Limit            |  |  |
|                      |                              | EG020A-F: Selenium                                 | 7782-49-2  | 0.01   | mg/L                              | <0.01             | <0.01            | 0.00    | No Limit            |  |  |
|                      |                              | EG020A-F: Vanadium                                 | 7440-62-2  | 0.01   | mg/L                              | <0.01             | <0.01            | 0.00    | No Limit            |  |  |
|                      |                              | EG020A-F: Boron                                    | 7440-42-8  | 0.05   | mg/L                              | 0.27              | 0.28             | 4.23    | No Limit            |  |  |
|                      |                              | EG020A-F: Iron                                     | 7439-89-6  | 0.05   | mg/L                              | <0.05             | <0.05            | 0.00    | No Limit            |  |  |
| EG035F: Dissolved    | Mercury by FIMS (QC Lot:     | 1757201)                                           |            |        |                                   |                   |                  |         |                     |  |  |
| ES1818477-002        | Anonymous                    | EG035F: Mercury                                    | 7439-97-6  | 0.0001 | mg/L                              | <0.0001           | <0.0001          | 0.00    | No Limit            |  |  |
| ES1818613-004        | Pit                          | EG035F: Mercury                                    | 7439-97-6  | 0.0001 | mg/L                              | <0.0001           | <0.0001          | 0.00    | No Limit            |  |  |
| EK055G: Ammonia      | as N by Discrete Analyser    | (QC Lot: 1757534)                                  |            |        |                                   |                   |                  |         |                     |  |  |
| ES1818392-002        | Anonymous                    | EK055G: Ammonia as N                               | 7664-41-7  | 0.01   | mg/L                              | 7.50              | 7.50             | 0.00    | 0% - 20%            |  |  |
| ES1818636-001        | Anonymous                    | EK055G: Ammonia as N                               | 7664-41-7  | 0.01   | mg/L                              | 45.9              | 44.8             | 2.30    | 0% - 20%            |  |  |
| EK057G: Nitrite as   | N by Discrete Analyser (Q    | C Lot: 1757546)                                    |            |        |                                   |                   |                  |         |                     |  |  |
| ES1818613-001        | MB01S                        | EK057G: Nitrite as N                               | 14797-65-0 | 0.01   | mg/L                              | <0.01             | <0.01            | 0.00    | No Limit            |  |  |
| EK059G: Nitrite plu  | is Nitrate as N (NOx), by Di | screte Analyser (QC Lot: 1757535)                  |            |        |                                   |                   |                  |         |                     |  |  |
| ES1818613-001        | MB01S                        | EK059G: Nitrite + Nitrate as N                     |            | 0.01   | mg/L                              | <0.01             | 0.02             | 80.6    | No Limit            |  |  |
| ES1818701-001        | Anonymous                    | EK059G: Nitrite + Nitrate as N                     |            | 0.01   | mg/L                              | 0.13              | 0.14             | 0.00    | 0% - 50%            |  |  |
|                      | etroleum Hydrocarbons (Q     |                                                    |            |        |                                   |                   |                  |         |                     |  |  |
| ES1818566-004        | Anonymous                    | EP080: C6 - C9 Fraction                            |            | 20     | µg/L                              | <0.02 mg/L        | <20              | 0.00    | No Limit            |  |  |
| ES1818691-001        | Anonymous                    | EP080: C6 - C9 Fraction<br>EP080: C6 - C9 Fraction |            | 20     | μg/L                              | <0.02 mg/L<br><20 | <20              | 0.00    | No Limit            |  |  |
|                      | -                            | NEPM 2013 Fractions (QC Lot: 1759381)              |            | 20     | µ9/∟                              | ~20               | ~20              | 0.00    |                     |  |  |
|                      | -                            |                                                    | 00.010     | 20     |                                   | <0.02             | <00              | 0.00    | No Limit            |  |  |
| ES1818566-004        | Anonymous                    | EP080: C6 - C10 Fraction                           | C6_C10     | 20     | µg/L                              | <0.02 mg/L        | <20              | 0.00    | No Limit            |  |  |
| ES1818691-001        | Anonymous                    | EP080: C6 - C10 Fraction                           | C6_C10     | 20     | µg/L                              | <20               | <20              | 0.00    | No Limit            |  |  |
| EP080: BTEXN (QC     | Lot: 1759381)                |                                                    |            |        |                                   |                   |                  |         |                     |  |  |

| Page       | : 5 of 10                                             |
|------------|-------------------------------------------------------|
| Work Order | : ES1818613                                           |
| Client     | : HY-TEC INDUSTRIES PTY LTD                           |
| Project    | : Hytec Austen Quarry Baseline Groundwater Monitoring |



| Sub-Matrix: WATER    |                          |                            |            | Laboratory Duplicate (DUP) Report |      |                 |                  |         |                     |  |
|----------------------|--------------------------|----------------------------|------------|-----------------------------------|------|-----------------|------------------|---------|---------------------|--|
| Laboratory sample ID | Client sample ID         | Method: Compound           | CAS Number | LOR                               | Unit | Original Result | Duplicate Result | RPD (%) | Recovery Limits (%) |  |
| EP080: BTEXN (QC     | Lot: 1759381) - continue | d                          |            |                                   |      |                 |                  |         |                     |  |
| ES1818566-004        | Anonymous                | EP080: Benzene             | 71-43-2    | 1                                 | µg/L | <0.001 mg/L     | <1               | 0.00    | No Limit            |  |
|                      |                          | EP080: Toluene             | 108-88-3   | 2                                 | µg/L | <0.002 mg/L     | <2               | 0.00    | No Limit            |  |
|                      |                          | EP080: Ethylbenzene        | 100-41-4   | 2                                 | μg/L | 0.004 mg/L      | 4                | 0.00    | No Limit            |  |
|                      |                          | EP080: meta- & para-Xylene | 108-38-3   | 2                                 | µg/L | 0.004 mg/L      | 4                | 0.00    | No Limit            |  |
|                      |                          |                            | 106-42-3   |                                   |      |                 |                  |         |                     |  |
|                      |                          | EP080: ortho-Xylene        | 95-47-6    | 2                                 | µg/L | 0.003 mg/L      | 4                | 0.00    | No Limit            |  |
|                      |                          | EP080: Naphthalene         | 91-20-3    | 5                                 | µg/L | <0.005 mg/L     | <5               | 0.00    | No Limit            |  |
| ES1818691-001        | Anonymous                | EP080: Benzene             | 71-43-2    | 1                                 | µg/L | <1              | <1               | 0.00    | No Limit            |  |
|                      |                          | EP080: Toluene             | 108-88-3   | 2                                 | µg/L | <2              | <2               | 0.00    | No Limit            |  |
|                      |                          | EP080: Ethylbenzene        | 100-41-4   | 2                                 | µg/L | <2              | <2               | 0.00    | No Limit            |  |
|                      |                          | EP080: meta- & para-Xylene | 108-38-3   | 2                                 | µg/L | <2              | <2               | 0.00    | No Limit            |  |
|                      |                          |                            | 106-42-3   |                                   |      |                 |                  |         |                     |  |
|                      |                          | EP080: ortho-Xylene        | 95-47-6    | 2                                 | µg/L | <2              | <2               | 0.00    | No Limit            |  |
|                      |                          | EP080: Naphthalene         | 91-20-3    | 5                                 | µg/L | <5              | <5               | 0.00    | No Limit            |  |



#### Method Blank (MB) and Laboratory Control Spike (LCS) Report

The quality control term Method / Laboratory Blank refers to an analyte free matrix to which all reagents are added in the same volumes or proportions as used in standard sample preparation. The purpose of this QC parameter is to monitor potential laboratory contamination. The quality control term Laboratory Control Spike (LCS) refers to a certified reference material, or a known interference free matrix spiked with target analytes. The purpose of this QC parameter is to monitor method precision and accuracy independent of sample matrix. Dynamic Recovery Limits are based on statistical evaluation of processed LCS.

| Sub-Matrix: WATER                                                   |                  |        | Method Blank (MB) | Laboratory Control Spike (LCS) Report |               |                    |          |            |
|---------------------------------------------------------------------|------------------|--------|-------------------|---------------------------------------|---------------|--------------------|----------|------------|
|                                                                     |                  |        |                   | Report                                | Spike         | Spike Recovery (%) | Recovery | Limits (%) |
| Method: Compound                                                    | CAS Number       | LOR    | Unit              | Result                                | Concentration | LCS                | Low      | High       |
| EA015: Total Dissolved Solids dried at 180 ± 5 °C                   | (QCLot: 1764300) |        |                   |                                       |               |                    |          |            |
| EA015H: Total Dissolved Solids @180°C                               |                  | 10     | mg/L              | <10                                   | 2000 mg/L     | 102                | 87       | 109        |
|                                                                     |                  |        |                   | <10                                   | 293 mg/L      | 105                | 66       | 126        |
| ED037P: Alkalinity by PC Titrator(QCLot: 175704                     | 7)               |        |                   |                                       |               |                    |          |            |
| ED037-P: Total Alkalinity as CaCO3                                  |                  |        | mg/L              |                                       | 200 mg/L      | 105                | 81       | 111        |
|                                                                     |                  |        |                   |                                       | 50 mg/L       | 94.0               | 70       | 130        |
| ED040F: Dissolved Major Anions (QCLot: 175754                       | 4)               |        |                   |                                       |               |                    |          |            |
| ED040F: Silicon                                                     | 7440-21-3        | 0.05   | mg/L              | <0.05                                 | 5 mg/L        | 114                | 91       | 123        |
| ED041G: Sulfate (Turbidimetric) as SO4 2- by DA                     | (QCLot: 1757543) |        |                   |                                       |               |                    |          |            |
| ED041G: Sulfate as SO4 - Turbidimetric                              | 14808-79-8       | 1      | mg/L              | <1                                    | 25 mg/L       | 105                | 82       | 122        |
| ED045G: Chloride by Discrete Analyser (QCLot: 1                     | 1757542)         |        |                   |                                       |               |                    |          |            |
| ED045G: Chloride                                                    | 16887-00-6       | 1      | mg/L              | <1                                    | 10 mg/L       | 102                | 81       | 127        |
|                                                                     |                  |        |                   | <1                                    | 1000 mg/L     | 92.9               | 81       | 127        |
| ED093F: Dissolved Major Cations (QCLot: 17571                       | 287              |        |                   |                                       | <b>J</b>      |                    | -        |            |
| ED093F: Dissolved wajor Cattoris (QCEOL 1737 is                     | 7440-70-2        | 1      | mg/L              | <1                                    | 50 mg/L       | 91.6               | 80       | 114        |
| ED093F: Magnesium                                                   | 7439-95-4        | 1      | mg/L              | <1                                    | 50 mg/L       | 94.9               | 90       | 116        |
| ED093F: Sodium                                                      | 7440-23-5        | 1      | mg/L              | <1                                    | 50 mg/L       | 92.7               | 82       | 120        |
| ED093F: Potassium                                                   | 7440-09-7        | 1      | mg/L              | <1                                    | 50 mg/L       | 93.7               | 85       | 113        |
|                                                                     |                  |        |                   | -                                     |               |                    |          |            |
| EG020F: Dissolved Metals by ICP-MS(QCLot: 17<br>EG020A-F: Aluminium | 7429-90-5        | 0.01   | mg/L              | <0.01                                 | 0.5 mg/L      | 96.1               | 80       | 116        |
| EG020A-F: Arsenic                                                   | 7440-38-2        | 0.001  | mg/L              | <0.001                                | 0.1 mg/L      | 96.6               | 85       | 110        |
| EG020A-F: Arsenic<br>EG020A-F: Beryllium                            | 7440-30-2        | 0.001  | mg/L              | <0.001                                | 0.1 mg/L      | 93.5               | 85       | 115        |
| EG020A-F: Beryindin<br>EG020A-F: Barium                             | 7440-39-3        | 0.001  | mg/L              | <0.001                                | 0.1 mg/L      | 93.9               | 82       | 110        |
| EG020A-F: Cadmium                                                   | 7440-43-9        | 0.0001 | mg/L              | <0.0001                               | 0.1 mg/L      | 94.7               | 84       | 110        |
| EG020A-F: Chromium                                                  | 7440-47-3        | 0.001  | mg/L              | < 0.001                               | 0.1 mg/L      | 95.8               | 85       | 111        |
| EG020A-F: Cobalt                                                    | 7440-48-4        | 0.001  | mg/L              | <0.001                                | 0.1 mg/L      | 92.7               | 82       | 112        |
| EG020A-F: Copper                                                    | 7440-50-8        | 0.001  | mg/L              | < 0.001                               | 0.1 mg/L      | 95.4               | 81       | 111        |
| EG020A-F: Lead                                                      | 7439-92-1        | 0.001  | mg/L              | < 0.001                               | 0.1 mg/L      | 93.1               | 83       | 111        |
| EG020A-F: Manganese                                                 | 7439-96-5        | 0.001  | mg/L              | <0.001                                | 0.1 mg/L      | 97.3               | 82       | 110        |
| EG020A-F: Molybdenum                                                | 7439-98-7        | 0.001  | mg/L              | <0.001                                | 0.1 mg/L      | 98.7               | 79       | 113        |
| EG020A-F: Nickel                                                    | 7440-02-0        | 0.001  | mg/L              | <0.001                                | 0.1 mg/L      | 95.1               | 82       | 112        |
| EG020A-F: Selenium                                                  | 7782-49-2        | 0.01   | mg/L              | <0.01                                 | 0.1 mg/L      | 93.8               | 85       | 115        |
| EG020A-F: Vanadium                                                  | 7440-62-2        | 0.01   | mg/L              | <0.01                                 | 0.1 mg/L      | 95.7               | 83       | 109        |
| EG020A-F: Zinc                                                      | 7440-66-6        | 0.005  | mg/L              | <0.005                                | 0.1 mg/L      | 94.2               | 81       | 117        |
| EG020A-F: Boron                                                     | 7440-42-8        | 0.05   | mg/L              | <0.05                                 | 0.5 mg/L      | 94.4               | 85       | 115        |

| Page       | : 7 of 10                                             |
|------------|-------------------------------------------------------|
| Work Order | : ES1818613                                           |
| Client     | : HY-TEC INDUSTRIES PTY LTD                           |
| Project    | : Hytec Austen Quarry Baseline Groundwater Monitoring |



| ub-Matrix: WATER                                  |                             |        |              | Method Blank (MB) |                  | Laboratory Control Spike (LCS) Report |          |            |  |
|---------------------------------------------------|-----------------------------|--------|--------------|-------------------|------------------|---------------------------------------|----------|------------|--|
|                                                   |                             |        |              | Report            | Spike            | Spike Recovery (%)                    | Recovery | Limits (%) |  |
| Aethod: Compound                                  | CAS Number                  | LOR    | Unit         | Result            | Concentration    | LCS                                   | Low      | High       |  |
| G020F: Dissolved Metals by ICP-MS (QCLot: 175     | 7199) - continued           |        |              |                   |                  |                                       |          |            |  |
| G020A-F: Iron                                     | 7439-89-6                   | 0.05   | mg/L         | <0.05             | 0.5 mg/L         | 96.4                                  | 82       | 112        |  |
| G020F: Dissolved Metals by ICP-MS (QCLot: 175     | 7200)                       |        |              |                   |                  |                                       |          |            |  |
| G020B-F: Silver                                   | 7440-22-4                   | 0.001  | mg/L         | <0.001            |                  |                                       |          |            |  |
| G020B-F: Strontium                                | 7440-24-6                   | 0.001  | mg/L         | <0.001            | 0.1 mg/L         | 99.2                                  | 81       | 113        |  |
| G020B-F: Titanium                                 | 7440-32-6                   | 0.01   | mg/L         | <0.01             | 0.1 mg/L         | 99.6                                  | 77       | 119        |  |
| G020F: Dissolved Metals by ICP-MS (QCLot: 175     | 7202)                       |        |              |                   |                  |                                       |          |            |  |
| G020A-F: Aluminium                                | 7429-90-5                   | 0.01   | mg/L         | <0.01             | 0.5 mg/L         | 96.8                                  | 80       | 116        |  |
| G020A-F: Arsenic                                  | 7440-38-2                   | 0.001  | mg/L         | <0.001            | 0.1 mg/L         | 95.2                                  | 85       | 114        |  |
| G020A-F: Beryllium                                | 7440-41-7                   | 0.001  | mg/L         | <0.001            | 0.1 mg/L         | 97.7                                  | 85       | 115        |  |
| G020A-F: Barium                                   | 7440-39-3                   | 0.001  | mg/L         | <0.001            | 0.1 mg/L         | 97.0                                  | 82       | 110        |  |
| G020A-F: Cadmium                                  | 7440-43-9                   | 0.0001 | mg/L         | <0.0001           | 0.1 mg/L         | 95.2                                  | 84       | 110        |  |
| G020A-F: Chromium                                 | 7440-47-3                   | 0.001  | mg/L         | <0.001            | 0.1 mg/L         | 94.5                                  | 85       | 111        |  |
| G020A-F: Cobalt                                   | 7440-48-4                   | 0.001  | mg/L         | <0.001            | 0.1 mg/L         | 93.8                                  | 82       | 112        |  |
| G020A-F: Copper                                   | 7440-50-8                   | 0.001  | mg/L         | <0.001            | 0.1 mg/L         | 95.3                                  | 81       | 111        |  |
| G020A-F: Lead                                     | 7439-92-1                   | 0.001  | mg/L         | <0.001            | 0.1 mg/L         | 93.3                                  | 83       | 111        |  |
| G020A-F: Manganese                                | 7439-96-5                   | 0.001  | mg/L         | <0.001            | 0.1 mg/L         | 93.9                                  | 82       | 110        |  |
| G020A-F: Molybdenum                               | 7439-98-7                   | 0.001  | mg/L         | <0.001            | 0.1 mg/L         | 98.2                                  | 79       | 113        |  |
| G020A-F: Nickel                                   | 7440-02-0                   | 0.001  | mg/L         | <0.001            | 0.1 mg/L         | 92.3                                  | 82       | 112        |  |
| G020A-F: Selenium                                 | 7782-49-2                   | 0.01   | mg/L         | <0.01             | 0.1 mg/L         | 94.9                                  | 85       | 115        |  |
| G020A-F: Vanadium                                 | 7440-62-2                   | 0.01   | mg/L         | <0.01             | 0.1 mg/L         | 93.5                                  | 83       | 109        |  |
| G020A-F: Zinc                                     | 7440-66-6                   | 0.005  | mg/L         | <0.005            | 0.1 mg/L         | 96.1                                  | 81       | 117        |  |
| G020A-F: Boron                                    | 7440-42-8                   | 0.05   | mg/L         | <0.05             | 0.5 mg/L         | 95.9                                  | 85       | 115        |  |
| G020A-F: Iron                                     | 7439-89-6                   | 0.05   | mg/L         | <0.05             | 0.5 mg/L         | 94.7                                  | 82       | 112        |  |
| G035F: Dissolved Mercury by FIMS (QCLot: 1757     | 201)                        |        |              |                   |                  |                                       |          |            |  |
| G035F: Mercury                                    | 7439-97-6                   | 0.0001 | mg/L         | <0.0001           | 0.01 mg/L        | 89.3                                  | 83       | 105        |  |
| K055G: Ammonia as N by Discrete Analyser (QC      | Lot: 1757534)               |        |              |                   |                  |                                       |          |            |  |
| K055G: Ammonia as N                               | 7664-41-7                   | 0.01   | mg/L         | <0.01             | 1 mg/L           | 99.3                                  | 90       | 114        |  |
| K057G: Nitrite as N by Discrete Analyser (QCLot   | • 1757546)                  |        | _            |                   |                  |                                       |          |            |  |
| K057G: Nitrite as N                               | 14797-65-0                  | 0.01   | mg/L         | <0.01             | 0.5 mg/L         | 101                                   | 82       | 114        |  |
| K059G: Nitrite plus Nitrate as N (NOx) by Discret |                             |        | ····g· –     |                   |                  |                                       |          |            |  |
| K059G: Nitrite plus Nitrate as N (NOX) by Discret |                             | 0.01   | mg/L         | <0.01             | 0.5 mg/L         | 98.4                                  | 91       | 113        |  |
|                                                   |                             |        |              | 0.01              | s.s mg/E         |                                       |          |            |  |
| 2075(SIM)B: Polynuclear Aromatic Hydrocarbons     | (QCLot: 1754565)<br>91-20-3 | 1      | uc/l         | <1.0              | 5 40/            | 71.0                                  | 50       | 94         |  |
| P075(SIM): Naphthalene                            | 208-96-8                    | 1      | µg/L         | <1.0              | 5 µg/L           | 71.0                                  | 64       | 94         |  |
| P075(SIM): Acenaphthylene                         | 83-32-9                     | 1      | µg/L         | <1.0              | 5 µg/L           | 69.7                                  | 62       | 114        |  |
| P075(SIM): Acenaphthene                           | 86-73-7                     | 1      | µg/L         | <1.0              | 5 µg/L           | 72.8                                  | 64       | 113        |  |
| P075(SIM): Fluorene                               | 85-01-8                     | 1      | μg/L<br>μg/L | <1.0              | 5 μg/L<br>5 μg/L | 90.9                                  | 63       | 115        |  |
| P075(SIM): Phenanthrene P075(SIM): Anthracene     | 120-12-7                    | 1      | μg/L         | <1.0              | 5 μg/L           | 71.6                                  | 64       | 116        |  |

| Page       | : 8 of 10                                             |
|------------|-------------------------------------------------------|
| Work Order | : ES1818613                                           |
| Client     | : HY-TEC INDUSTRIES PTY LTD                           |
| Project    | : Hytec Austen Quarry Baseline Groundwater Monitoring |



| Sub-Matrix: WATER                            |                            |              | Method Blank (MB) | Laboratory Control Spike (LCS) Report |               |                    |          |            |
|----------------------------------------------|----------------------------|--------------|-------------------|---------------------------------------|---------------|--------------------|----------|------------|
|                                              |                            |              |                   | Report                                | Spike         | Spike Recovery (%) | Recovery | Limits (%) |
| Method: Compound                             | CAS Number                 | LOR          | Unit              | Result                                | Concentration | LCS                | Low      | High       |
| EP075(SIM)B: Polynuclear Aromatic Hydrocarb  | ons (QCLot: 1754565) - cor | ntinued      |                   |                                       |               |                    |          |            |
| EP075(SIM): Fluoranthene                     | 206-44-0                   | 1            | µg/L              | <1.0                                  | 5 µg/L        | 81.9               | 64       | 118        |
| EP075(SIM): Pyrene                           | 129-00-0                   | 1            | µg/L              | <1.0                                  | 5 µg/L        | 80.1               | 63       | 118        |
| P075(SIM): Benz(a)anthracene                 | 56-55-3                    | 1            | µg/L              | <1.0                                  | 5 µg/L        | 76.5               | 64       | 117        |
| P075(SIM): Chrysene                          | 218-01-9                   | 1            | µg/L              | <1.0                                  | 5 µg/L        | 78.3               | 63       | 116        |
| P075(SIM): Benzo(b+j)fluoranthene            | 205-99-2<br>205-82-3       | 1            | µg/L              | <1.0                                  | 5 µg/L        | 68.1               | 62       | 119        |
| P075(SIM): Benzo(k)fluoranthene              | 207-08-9                   | 1            | µg/L              | <1.0                                  | 5 µg/L        | 79.4               | 63       | 115        |
| P075(SIM): Benzo(a)pyrene                    | 50-32-8                    | 0.5          | µg/L              | <0.5                                  | 5 µg/L        | 79.0               | 63       | 117        |
| P075(SIM): Indeno(1.2.3.cd)pyrene            | 193-39-5                   | 1            | µg/L              | <1.0                                  | 5 µg/L        | 70.8               | 60       | 118        |
| P075(SIM): Dibenz(a.h)anthracene             | 53-70-3                    | 1            | µg/L              | <1.0                                  | 5 µg/L        | 71.8               | 61       | 117        |
| P075(SIM): Benzo(g.h.i)perylene              | 191-24-2                   | 1            | µg/L              | <1.0                                  | 5 µg/L        | 73.1               | 59       | 118        |
| P080/071: Total Petroleum Hydrocarbons (QC   | Lot: 1754566)              |              |                   |                                       |               |                    |          |            |
| P071: C10 - C14 Fraction                     |                            | 50           | µg/L              | <50                                   | 2000 µg/L     | 85.9               | 76       | 116        |
| P071: C15 - C28 Fraction                     |                            | 100          | µg/L              | <100                                  | 3000 µg/L     | 99.4               | 83       | 109        |
| P071: C29 - C36 Fraction                     |                            | 50           | µg/L              | <50                                   | 2000 µg/L     | 84.8               | 75       | 113        |
| P080/071: Total Petroleum Hydrocarbons (QC   | Lot: 1759381)              |              |                   |                                       |               |                    |          |            |
| P080: C6 - C9 Fraction                       |                            | 20           | µg/L              | <20                                   | 260 µg/L      | 84.6               | 75       | 127        |
| P080/071: Total Recoverable Hydrocarbons - I | NEPM 2013 Fractions (QCLo  | ot: 1754566) |                   |                                       |               |                    |          |            |
| P071: >C10 - C16 Fraction                    |                            | 100          | µg/L              | <100                                  | 2500 μg/L     | 95.6               | 76       | 114        |
| P071: >C16 - C34 Fraction                    |                            | 100          | µg/L              | <100                                  | 3500 µg/L     | 96.2               | 81       | 111        |
| P071: >C34 - C40 Fraction                    |                            | 100          | µg/L              | <100                                  | 1500 µg/L     | 88.2               | 77       | 119        |
| P080/071: Total Recoverable Hydrocarbons - I | NEPM 2013 Fractions (QCL   | ot: 1759381) |                   |                                       |               |                    |          |            |
| P080: C6 - C10 Fraction                      | C6_C10                     | 20           | µg/L              | <20                                   | 310 µg/L      | 87.0               | 75       | 127        |
| P080: BTEXN (QCLot: 1759381)                 |                            |              |                   |                                       |               |                    |          | 1          |
| P080: Benzene                                | 71-43-2                    | 1            | μg/L              | <1                                    | 10 µg/L       | 91.9               | 70       | 122        |
| P080: Toluene                                | 108-88-3                   | 2            | μg/L              | <2                                    | 10 µg/L       | 90.2               | 69       | 123        |
| P080: Ethylbenzene                           | 100-41-4                   | 2            | μg/L              | <2                                    | 10 µg/L       | 88.6               | 70       | 120        |
| P080: meta- & para-Xylene                    | 108-38-3<br>106-42-3       | 2            | µg/L              | <2                                    | 10 µg/L       | 84.9               | 69       | 121        |
| P080: ortho-Xylene                           | 95-47-6                    | 2            | µg/L              | <2                                    | 10 µg/L       | 87.3               | 72       | 122        |
| P080: Naphthalene                            | 91-20-3                    | 5            | µg/L              | <5                                    | 10 µg/L       | 80.7               | 70       | 120        |

#### Matrix Spike (MS) Report

The quality control term Matrix Spike (MS) refers to an intralaboratory split sample spiked with a representative set of target analytes. The purpose of this QC parameter is to monitor potential matrix effects on analyte recoveries. Static Recovery Limits as per laboratory Data Quality Objectives (DQOs). Ideal recovery ranges stated may be waived in the event of sample matrix interference.

| WATER | Matrix Spike (MS) Report |                  |                     |
|-------|--------------------------|------------------|---------------------|
|       | Spike                    | SpikeRecovery(%) | Recovery Limits (%) |
|       |                          |                  |                     |



| ıb-Matrix: WATER   |                                                |                                         |            | Matrix Spike (MS) Report |                  |            |                     |  |
|--------------------|------------------------------------------------|-----------------------------------------|------------|--------------------------|------------------|------------|---------------------|--|
|                    |                                                |                                         |            | Spike                    | SpikeRecovery(%) | Recovery L | Recovery Limits (%) |  |
| boratory sample ID | Client sample ID                               | Method: Compound                        | CAS Number | Concentration            | MS               | Low        | High                |  |
| D041G: Sulfate (   | (Turbidimetric) as SO4 2- by DA (QCLot: 175754 | 3)                                      |            |                          |                  |            |                     |  |
| ES1817359-003      | Anonymous                                      | ED041G: Sulfate as SO4 - Turbidimetric  | 14808-79-8 | 10 mg/L                  | # Not            | 70         | 130                 |  |
|                    |                                                |                                         |            |                          | Determined       |            |                     |  |
| D045G: Chloride    | by Discrete Analyser (QCLot: 1757542)          |                                         |            |                          |                  |            |                     |  |
| ES1817359-003      | Anonymous                                      | ED045G: Chloride                        | 16887-00-6 | 250 mg/L                 | 107              | 70         | 130                 |  |
| G020F: Dissolve    | d Metals by ICP-MS (QCLot: 1757199)            |                                         |            |                          |                  |            |                     |  |
| ES1818340-002      | Anonymous                                      | EG020A-F: Arsenic                       | 7440-38-2  | 1 mg/L                   | 87.4             | 70         | 130                 |  |
|                    |                                                | EG020A-F: Beryllium                     | 7440-41-7  | 1 mg/L                   | 84.5             | 70         | 130                 |  |
|                    |                                                | EG020A-F: Barium                        | 7440-39-3  | 1 mg/L                   | 85.2             | 70         | 130                 |  |
|                    |                                                | EG020A-F: Cadmium                       | 7440-43-9  | 0.25 mg/L                | 84.0             | 70         | 130                 |  |
|                    |                                                | EG020A-F: Cadmium<br>EG020A-F: Chromium | 7440-47-3  | 1 mg/L                   | 82.3             | 70         | 130                 |  |
|                    |                                                | EG020A-F: Cobalt                        | 7440-48-4  | 1 mg/L                   | 84.7             | 70         | 130                 |  |
|                    |                                                | EG020A-F: Copper                        | 7440-50-8  | 1 mg/L                   | 86.7             | 70         | 130                 |  |
|                    |                                                | EG020A-F: Lead                          | 7439-92-1  | 1 mg/L                   | 79.8             | 70         | 130                 |  |
|                    |                                                | EG020A-F: Manganese                     | 7439-96-5  | 1 mg/L                   | 82.2             | 70         | 130                 |  |
|                    |                                                | EG020A-F: Nickel                        | 7440-02-0  | 1 mg/L                   | 85.4             | 70         | 130                 |  |
|                    |                                                | EG020A-F: Vanadium                      | 7440-62-2  | 1 mg/L                   | 85.2             | 70         | 130                 |  |
|                    |                                                | EG020A-F: Zinc                          | 7440-66-6  | 1 mg/L                   | 85.8             | 70         | 130                 |  |
| GO20E: Dissolve    | ed Metals by ICP-MS (QCLot: 1757202)           |                                         |            | 3                        |                  |            |                     |  |
| ES1818613-005      | DUPB                                           |                                         | 7440-38-2  | 1 mg/L                   | 83.9             | 70         | 130                 |  |
|                    | DOPB                                           | EG020A-F: Arsenic                       | 7440-36-2  |                          | 85.6             | 70         | 130                 |  |
|                    |                                                | EG020A-F: Beryllium                     | 7440-41-7  | 1 mg/L<br>1 mg/L         | 82.2             | 70         | 130                 |  |
|                    |                                                | EG020A-F: Barium                        | 7440-39-3  | 0.25 mg/L                | 82.6             | 70         | 130                 |  |
|                    |                                                | EG020A-F: Cadmium                       | 7440-43-9  | 0.25 mg/L                | 72.8             | 70         | 130                 |  |
|                    |                                                | EG020A-F: Chromium                      | 7440-47-3  | 1 mg/L                   | 81.2             | 70         | 130                 |  |
|                    |                                                | EG020A-F: Cobalt                        | 7440-48-4  | 1 mg/L                   | 82.0             | 70         | 130                 |  |
|                    |                                                | EG020A-F: Copper                        | 7439-92-1  | 1 mg/L                   | 79.2             | 70         | 130                 |  |
|                    |                                                | EG020A-F: Lead                          | 7439-92-1  | 1 mg/L                   | 82.0             | 70         | 130                 |  |
|                    |                                                | EG020A-F: Manganese<br>EG020A-F: Nickel | 7439-90-5  | 1 mg/L                   | 82.0             | 70         | 130                 |  |
|                    |                                                |                                         | 7440-62-2  | 1 mg/L                   | 81.9             | 70         | 130                 |  |
|                    |                                                | EG020A-F: Vanadium<br>EG020A-F: Zinc    | 7440-66-6  | 1 mg/L                   | 83.6             | 70         | 130                 |  |
| CO25E: Disaskus    | ed Mercury by FIMS (QCLot: 1757201)            |                                         |            | 1119/2                   | 00.0             | 10         |                     |  |
|                    |                                                |                                         | 7400.07.0  | 0.01                     | 01.7             | 70         | 400                 |  |
| ES1818477-001      | Anonymous                                      | EG035F: Mercury                         | 7439-97-6  | 0.01 mg/L                | 91.7             | 70         | 130                 |  |
| K055G: Ammoni      | ia as N by Discrete Analyser (QCLot: 1757534)  |                                         |            |                          |                  |            |                     |  |
| ES1818392-002      | Anonymous                                      | EK055G: Ammonia as N                    | 7664-41-7  | 1 mg/L                   | # Not            | 70         | 130                 |  |
|                    |                                                |                                         |            |                          | Determined       |            |                     |  |
| EK057G: Nitrite a  | s N by Discrete Analyser (QCLot: 1757546)      |                                         |            |                          |                  |            |                     |  |
|                    |                                                |                                         |            |                          |                  |            |                     |  |

| Page       | : 10 of 10                                            |
|------------|-------------------------------------------------------|
| Work Order | : ES1818613                                           |
| Client     | : HY-TEC INDUSTRIES PTY LTD                           |
| Project    | : Hytec Austen Quarry Baseline Groundwater Monitoring |



| Sub-Matrix: WATER    |                                                        | М                              | atrix Spike (MS) Report |          |                  |            |           |
|----------------------|--------------------------------------------------------|--------------------------------|-------------------------|----------|------------------|------------|-----------|
|                      |                                                        |                                |                         |          | SpikeRecovery(%) | Recovery L | imits (%) |
| Laboratory sample ID | Client sample ID                                       | Method: Compound               | Concentration           | MS       | Low              | High       |           |
| EK059G: Nitrite p    | lus Nitrate as N (NOx) by Discrete Analyser (QCLot: 17 | 57535)                         |                         |          |                  |            |           |
| ES1818613-001        | MB01S                                                  | EK059G: Nitrite + Nitrate as N |                         | 0.5 mg/L | 104              | 70         | 130       |
| EP080/071: Total F   | Petroleum Hydrocarbons (QCLot: 1759381)                |                                |                         |          |                  |            |           |
| ES1818566-004        | Anonymous                                              | EP080: C6 - C9 Fraction        |                         | 325 µg/L | 93.5             | 70         | 130       |
| EP080/071: Total F   | Recoverable Hydrocarbons - NEPM 2013 Fractions (QCL    | _ot: 1759381)                  |                         |          |                  |            |           |
| ES1818566-004        | Anonymous                                              | EP080: C6 - C10 Fraction       | C6_C10                  | 375 µg/L | 92.6             | 70         | 130       |
| EP080: BTEXN (Q      | CLot: 1759381)                                         |                                |                         |          |                  |            |           |
| ES1818566-004        | Anonymous                                              | EP080: Benzene                 | 71-43-2                 | 25 µg/L  | 83.3             | 70         | 130       |
|                      |                                                        | EP080: Toluene                 | 108-88-3                | 25 µg/L  | 90.6             | 70         | 130       |
|                      |                                                        | EP080: Ethylbenzene            | 100-41-4                | 25 µg/L  | 89.5             | 70         | 130       |
|                      |                                                        | EP080: meta- & para-Xylene     | 108-38-3                | 25 µg/L  | 90.8             | 70         | 130       |
|                      |                                                        |                                | 106-42-3                |          |                  |            |           |
|                      |                                                        | EP080: ortho-Xylene            | 95-47-6                 | 25 µg/L  | 86.6             | 70         | 130       |
|                      |                                                        | EP080: Naphthalene             | 91-20-3                 | 25 µg/L  | 105              | 70         | 130       |



: 2201035512

| QA/QC Compliance Ass                                  | QA/QC Compliance Assessment to assist with Quality Review |                                 |  |  |  |  |  |  |  |
|-------------------------------------------------------|-----------------------------------------------------------|---------------------------------|--|--|--|--|--|--|--|
| ES1818613                                             | Page                                                      | : 1 of 8                        |  |  |  |  |  |  |  |
| : HY-TEC INDUSTRIES PTY LTD                           | Laboratory                                                | : Environmental Division Sydney |  |  |  |  |  |  |  |
|                                                       | Telephone                                                 | : +61-2-8784 8555               |  |  |  |  |  |  |  |
| : Hytec Austen Quarry Baseline Groundwater Monitoring | Date Samples Received                                     | : 26-Jun-2018                   |  |  |  |  |  |  |  |
| :                                                     | Issue Date                                                | : 02-Jul-2018                   |  |  |  |  |  |  |  |
| : James Morrow                                        | No. of samples received                                   | : 5                             |  |  |  |  |  |  |  |

This report is automatically generated by the ALS LIMS through interpretation of the ALS Quality Control Report and several Quality Assurance parameters measured by ALS. This automated reporting highlights any non-conformances, facilitates faster and more accurate data validation and is designed to assist internal expert and external Auditor review. Many components of this report contribute to the overall DQO assessment and reporting for guideline compliance.

No. of samples analysed

: 5

Brief method summaries and references are also provided to assist in traceability.

# **Summary of Outliers**

Work Order

Order number

Client Contact Project Site Sampler

### **Outliers : Quality Control Samples**

This report highlights outliers flagged in the Quality Control (QC) Report.

- NO Method Blank value outliers occur.
- <u>NO</u> Duplicate outliers occur.
- <u>NO</u> Laboratory Control outliers occur.
- Matrix Spike outliers exist please see following pages for full details.
- For all regular sample matrices, NO surrogate recovery outliers occur.

### **Outliers : Analysis Holding Time Compliance**

• Analysis Holding Time Outliers exist - please see following pages for full details.

### **Outliers : Frequency of Quality Control Samples**

• Quality Control Sample Frequency Outliers exist - please see following pages for full details.



### **Outliers : Quality Control Samples**

Duplicates, Method Blanks, Laboratory Control Samples and Matrix Spikes

#### Matrix: WATER

| Compound Group Name                             | Laboratory Sample ID | Client Sample ID | Analyte          | CAS Number | Data       | Limits | Comment                          |
|-------------------------------------------------|----------------------|------------------|------------------|------------|------------|--------|----------------------------------|
| Matrix Spike (MS) Recoveries                    |                      |                  |                  |            |            |        |                                  |
| ED041G: Sulfate (Turbidimetric) as SO4 2- by DA | ES1817359003         | Anonymous        | Sulfate as SO4 - | 14808-79-8 | Not        |        | MS recovery not determined,      |
|                                                 |                      |                  | Turbidimetric    |            | Determined |        | background level greater than or |
|                                                 |                      |                  |                  |            |            |        | equal to 4x spike level.         |
| EK055G: Ammonia as N by Discrete Analyser       | ES1818392002         | Anonymous        | Ammonia as N     | 7664-41-7  | Not        |        | MS recovery not determined,      |
|                                                 |                      |                  |                  |            | Determined |        | background level greater than or |
|                                                 |                      |                  |                  |            |            |        | equal to 4x spike level.         |

### **Outliers : Analysis Holding Time Compliance**

#### Matrix: WATER

| Method                                   |        |      | Extr         | raction / Preparation |         | Analysis      |                  |         |
|------------------------------------------|--------|------|--------------|-----------------------|---------|---------------|------------------|---------|
| Container / Client Sample ID(s)          |        | Date | te extracted | Due for extraction    | Days    | Date analysed | Due for analysis | Days    |
|                                          |        |      |              |                       | overdue |               |                  | overdue |
| EK057G: Nitrite as N by Discrete Analyse | r      |      |              |                       |         |               |                  |         |
| Clear Plastic Bottle - Natural           |        |      |              |                       |         |               |                  |         |
| MB01S,                                   | MB01D, |      |              |                       |         | 27-Jun-2018   | 24-Jun-2018      | 3       |
| MB02,                                    | Pit,   |      |              |                       |         |               |                  |         |
| DUPB                                     |        |      |              |                       |         |               |                  |         |

### **Outliers : Frequency of Quality Control Samples**

#### Matrix: WATER

| Quality Control Sample Type | Co | ount    | Rate (%) |          | Quality Control Specification  |
|-----------------------------|----|---------|----------|----------|--------------------------------|
| Method                      | QC | Regular | Actual   | Expected |                                |
| Laboratory Duplicates (DUP) |    |         |          |          |                                |
| PAH/Phenols (GC/MS - SIM)   | 0  | 6       | 0.00     | 10.00    | NEPM 2013 B3 & ALS QC Standard |
| TRH - Semivolatile Fraction | 0  | 6       | 0.00     | 10.00    | NEPM 2013 B3 & ALS QC Standard |
| Matrix Spikes (MS)          |    |         |          |          |                                |
| PAH/Phenols (GC/MS - SIM)   | 0  | 6       | 0.00     | 5.00     | NEPM 2013 B3 & ALS QC Standard |
| TRH - Semivolatile Fraction | 0  | 6       | 0.00     | 5.00     | NEPM 2013 B3 & ALS QC Standard |

# Analysis Holding Time Compliance

If samples are identified below as having been analysed or extracted outside of recommended holding times, this should be taken into consideration when interpreting results.

This report summarizes extraction / preparation and analysis times and compares each with ALS recommended holding times (referencing USEPA SW 846, APHA, AS and NEPM) based on the sample container provided. Dates reported represent first date of extraction or analysis and preclude subsequent dilutions and reruns. A listing of breaches (if any) is provided herein.

Holding time for leachate methods (e.g. TCLP) vary according to the analytes reported. Assessment compares the leach date with the shortest analyte holding time for the equivalent soil method. These are: organics 14 days, mercury 28 days & other metals 180 days. A recorded breach does not guarantee a breach for all non-volatile parameters.

Holding times for VOC in soils vary according to analytes of interest. Vinyl Chloride and Styrene holding time is 7 days; others 14 days. A recorded breach does not guarantee a breach for all VOC analytes and should be verified in case the reported breach is a false positive or Vinyl Chloride and Styrene are not key analytes of interest/concern.

| Matrix: WATER Evaluation: × = Holding time breach ; ✓ = Within holding |             |                                                                                                                                                                                    |  |  |  |            |  |
|------------------------------------------------------------------------|-------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|------------|--|
| Method                                                                 | Sample Date | Extraction / Preparation         Analysis           Date extracted         Due for extraction         Evaluation         Date analysed         Due for analysis         Evaluation |  |  |  |            |  |
| Container / Client Sample ID(s)                                        |             |                                                                                                                                                                                    |  |  |  | Evaluation |  |

| Page       | : 3 of 8                                              |
|------------|-------------------------------------------------------|
| Work Order | : ES1818613                                           |
| Client     | : HY-TEC INDUSTRIES PTY LTD                           |
| Project    | : Hytec Austen Quarry Baseline Groundwater Monitoring |



| Matrix: WATER                                                                      |                |             |                |                        | Evaluation | : × = Holding time | breach ; ✓ = Withi | n holding time. |
|------------------------------------------------------------------------------------|----------------|-------------|----------------|------------------------|------------|--------------------|--------------------|-----------------|
| Method                                                                             |                | Sample Date | Ex             | traction / Preparation |            |                    | Analysis           |                 |
| Container / Client Sample ID(s)                                                    |                |             | Date extracted | Due for extraction     | Evaluation | Date analysed      | Due for analysis   | Evaluation      |
| EA015: Total Dissolved Solids dried at 180 ± 5 °C                                  |                |             |                |                        |            |                    |                    |                 |
| Clear Plastic Bottle - Natural (EA015H)<br>MB01S,<br>MB02,<br>DUPB                 | MB01D,<br>Pit, | 22-Jun-2018 |                |                        |            | 29-Jun-2018        | 29-Jun-2018        | *               |
| ED037P: Alkalinity by PC Titrator                                                  |                |             |                |                        |            |                    |                    |                 |
| Clear Plastic Bottle - Natural (ED037-P)<br>MB01S,<br>MB02,<br>DUPB                | MB01D,<br>Pit, | 22-Jun-2018 |                |                        |            | 27-Jun-2018        | 06-Jul-2018        | ~               |
| ED040F: Dissolved Major Anions                                                     |                |             |                |                        |            |                    |                    |                 |
| Clear Plastic Bottle - Natural (ED040F)<br>MB01S,<br>MB02,<br>DUPB                 | MB01D,<br>Pit, | 22-Jun-2018 |                |                        |            | 27-Jun-2018        | 20-Jul-2018        | ~               |
| ED041G: Sulfate (Turbidimetric) as SO4 2- by DA                                    |                |             |                |                        |            |                    |                    |                 |
| Clear Plastic Bottle - Natural (ED041G)<br>MB01S,<br>MB02,<br>DUPB                 | MB01D,<br>Pit, | 22-Jun-2018 |                |                        |            | 27-Jun-2018        | 20-Jul-2018        | ~               |
| ED045G: Chloride by Discrete Analyser                                              |                |             |                |                        |            |                    |                    |                 |
| Clear Plastic Bottle - Natural (ED045G)<br>MB01S,<br>MB02,<br>DUPB                 | MB01D,<br>Pit, | 22-Jun-2018 |                |                        |            | 27-Jun-2018        | 20-Jul-2018        | ~               |
| ED093F: Dissolved Major Cations                                                    |                |             |                |                        |            |                    |                    |                 |
| Clear Plastic Bottle - Nitric Acid; Filtered (ED093F)<br>MB01S,<br>MB02,<br>DUPB   | MB01D,<br>Pit, | 22-Jun-2018 |                |                        |            | 27-Jun-2018        | 20-Jul-2018        | ~               |
| EG020F: Dissolved Metals by ICP-MS                                                 |                |             |                |                        |            |                    |                    |                 |
| Clear Plastic Bottle - Nitric Acid; Filtered (EG020B-F)<br>MB01S,<br>MB02,<br>DUPB | MB01D,<br>Pit, | 22-Jun-2018 |                |                        |            | 27-Jun-2018        | 19-Dec-2018        | ~               |
| EG035F: Dissolved Mercury by FIMS                                                  |                |             |                |                        |            |                    |                    |                 |
| Clear Plastic Bottle - Nitric Acid; Filtered (EG035F)<br>MB01S,<br>MB02,<br>DUPB   | MB01D,<br>Pit, | 22-Jun-2018 |                |                        |            | 27-Jun-2018        | 20-Jul-2018        | *               |

| Page       | : 4 of 8                                              |
|------------|-------------------------------------------------------|
| Work Order | : ES1818613                                           |
| Client     | : HY-TEC INDUSTRIES PTY LTD                           |
| Project    | : Hytec Austen Quarry Baseline Groundwater Monitoring |



| Matrix: WATER                                  |                     |             |                |                        | Evaluation | n: × = Holding time | e breach ; ✓ = With | in holding tin        |
|------------------------------------------------|---------------------|-------------|----------------|------------------------|------------|---------------------|---------------------|-----------------------|
| Method                                         |                     | Sample Date | Ex             | traction / Preparation |            |                     | Analysis            |                       |
| Container / Client Sample ID(s)                |                     |             | Date extracted | Due for extraction     | Evaluation | Date analysed       | Due for analysis    | Evaluation            |
| EK055G: Ammonia as N by Discrete Analyser      |                     |             |                |                        |            |                     |                     |                       |
| Clear Plastic Bottle - Sulfuric Acid (EK055G)  |                     |             |                |                        |            |                     |                     |                       |
| MB01S,                                         | MB01D,              | 22-Jun-2018 |                |                        |            | 27-Jun-2018         | 20-Jul-2018         | <ul> <li>✓</li> </ul> |
| MB02,                                          | Pit,                |             |                |                        |            |                     |                     |                       |
| DUPB                                           |                     |             |                |                        |            |                     |                     |                       |
| EK057G: Nitrite as N by Discrete Analyser      |                     |             |                |                        |            |                     |                     |                       |
| Clear Plastic Bottle - Natural (EK057G)        |                     |             |                |                        |            |                     |                     |                       |
| MB01S,                                         | MB01D,              | 22-Jun-2018 |                |                        |            | 27-Jun-2018         | 24-Jun-2018         | *                     |
| MB02,                                          | Pit,                |             |                |                        |            |                     |                     |                       |
| DUPB                                           |                     |             |                |                        |            |                     |                     |                       |
| EK059G: Nitrite plus Nitrate as N (NOx) by Dis | screte Analyser     |             |                |                        |            |                     |                     |                       |
| Clear Plastic Bottle - Sulfuric Acid (EK059G)  |                     |             |                |                        |            |                     |                     |                       |
| MB01S,                                         | MB01D,              | 22-Jun-2018 |                |                        |            | 27-Jun-2018         | 20-Jul-2018         | ✓                     |
| MB02,                                          | Pit,                |             |                |                        |            |                     |                     |                       |
| DUPB                                           |                     |             |                |                        |            |                     |                     |                       |
| EP075(SIM)B: Polynuclear Aromatic Hydrocart    | oons                |             |                |                        |            |                     |                     |                       |
| Amber Glass Bottle - Unpreserved (EP075(SIM))  |                     |             |                |                        |            |                     |                     |                       |
| Pit,                                           | DUPB                | 22-Jun-2018 | 29-Jun-2018    | 29-Jun-2018            | ✓          | 29-Jun-2018         | 08-Aug-2018         | ✓                     |
| EP080/071: Total Petroleum Hydrocarbons        |                     |             |                |                        |            |                     |                     |                       |
| Amber Glass Bottle - Unpreserved (EP071)       |                     |             |                |                        |            |                     |                     |                       |
| Pit,                                           | DUPB                | 22-Jun-2018 | 29-Jun-2018    | 29-Jun-2018            | ✓          | 29-Jun-2018         | 08-Aug-2018         | ✓                     |
| Clear glass VOC vial - HCI (EP080)             |                     |             |                |                        |            |                     |                     |                       |
| Pit,                                           | DUPB                | 22-Jun-2018 | 29-Jun-2018    | 06-Jul-2018            | ✓          | 29-Jun-2018         | 06-Jul-2018         | ✓                     |
| EP080/071: Total Recoverable Hydrocarbons -    | NEPM 2013 Fractions |             |                |                        |            |                     |                     |                       |
| Amber Glass Bottle - Unpreserved (EP071)       |                     |             |                |                        |            |                     |                     |                       |
| Pit,                                           | DUPB                | 22-Jun-2018 | 29-Jun-2018    | 29-Jun-2018            | 1          | 29-Jun-2018         | 08-Aug-2018         | ✓                     |
| Clear glass VOC vial - HCl (EP080)             |                     |             |                |                        |            |                     |                     |                       |
| Pit,                                           | DUPB                | 22-Jun-2018 | 29-Jun-2018    | 06-Jul-2018            | ✓          | 29-Jun-2018         | 06-Jul-2018         | ✓                     |
| EP080: BTEXN                                   |                     |             |                |                        |            |                     |                     |                       |
| Clear glass VOC vial - HCl (EP080)             |                     |             |                |                        |            |                     |                     |                       |
| Pit,                                           | DUPB                | 22-Jun-2018 | 29-Jun-2018    | 06-Jul-2018            | ✓ ✓        | 29-Jun-2018         | 06-Jul-2018         | ✓                     |



# **Quality Control Parameter Frequency Compliance**

The following report summarises the frequency of laboratory QC samples analysed within the analytical lot(s) in which the submitted sample(s) was(were) processed. Actual rate should be greater than or equal to the expected rate. A listing of breaches is provided in the Summary of Outliers.

| Quality Control Sample Type                            |            | С  | ount    |        | Rate (%) |            | Quality Control Specification  |  |
|--------------------------------------------------------|------------|----|---------|--------|----------|------------|--------------------------------|--|
| Analytical Methods                                     | Method     | 20 | Reaular | Actual | Expected | Evaluation |                                |  |
| Laboratory Duplicates (DUP)                            |            |    |         |        |          |            |                                |  |
| Alkalinity by PC Titrator                              | ED037-P    | 2  | 20      | 10.00  | 10.00    | 1          | NEPM 2013 B3 & ALS QC Standard |  |
| Ammonia as N by Discrete analyser                      | EK055G     | 2  | 20      | 10.00  | 10.00    | 1          | NEPM 2013 B3 & ALS QC Standard |  |
| Chloride by Discrete Analyser                          | ED045G     | 2  | 20      | 10.00  | 10.00    | ✓          | NEPM 2013 B3 & ALS QC Standard |  |
| Dissolved Mercury by FIMS                              | EG035F     | 2  | 11      | 18.18  | 10.00    | ~          | NEPM 2013 B3 & ALS QC Standard |  |
| Dissolved Metals by ICP-MS - Suite A                   | EG020A-F   | 3  | 24      | 12.50  | 10.00    | ✓          | NEPM 2013 B3 & ALS QC Standard |  |
| Dissolved Metals by ICP-MS - Suite B                   | EG020B-F   | 1  | 9       | 11.11  | 10.00    | ✓          | NEPM 2013 B3 & ALS QC Standard |  |
| Najor Anions - Dissolved                               | ED040F     | 2  | 5       | 40.00  | 10.00    | 1          | NEPM 2013 B3 & ALS QC Standard |  |
| lajor Cations - Dissolved                              | ED093F     | 2  | 20      | 10.00  | 10.00    | ✓          | NEPM 2013 B3 & ALS QC Standard |  |
| Vitrite and Nitrate as N (NOx) by Discrete Analyser    | EK059G     | 2  | 18      | 11.11  | 10.00    | ✓          | NEPM 2013 B3 & ALS QC Standard |  |
| Nitrite as N by Discrete Analyser                      | EK057G     | 1  | 5       | 20.00  | 10.00    | ✓          | NEPM 2013 B3 & ALS QC Standard |  |
| PAH/Phenols (GC/MS - SIM)                              | EP075(SIM) | 0  | 6       | 0.00   | 10.00    | x          | NEPM 2013 B3 & ALS QC Standard |  |
| Sulfate (Turbidimetric) as SO4 2- by Discrete Analyser | ED041G     | 2  | 13      | 15.38  | 10.00    | ✓          | NEPM 2013 B3 & ALS QC Standard |  |
| otal Dissolved Solids (High Level)                     | EA015H     | 1  | 10      | 10.00  | 10.00    | ✓          | NEPM 2013 B3 & ALS QC Standard |  |
| RH - Semivolatile Fraction                             | EP071      | 0  | 6       | 0.00   | 10.00    | x          | NEPM 2013 B3 & ALS QC Standard |  |
| RH Volatiles/BTEX                                      | EP080      | 2  | 20      | 10.00  | 10.00    | ✓          | NEPM 2013 B3 & ALS QC Standard |  |
| aboratory Control Samples (LCS)                        |            |    |         |        |          |            |                                |  |
| Alkalinity by PC Titrator                              | ED037-P    | 2  | 20      | 10.00  | 10.00    | ✓          | NEPM 2013 B3 & ALS QC Standard |  |
| mmonia as N by Discrete analyser                       | EK055G     | 1  | 20      | 5.00   | 5.00     | ✓          | NEPM 2013 B3 & ALS QC Standard |  |
| Chloride by Discrete Analyser                          | ED045G     | 2  | 20      | 10.00  | 10.00    | ✓          | NEPM 2013 B3 & ALS QC Standard |  |
| Dissolved Mercury by FIMS                              | EG035F     | 1  | 11      | 9.09   | 5.00     | ✓          | NEPM 2013 B3 & ALS QC Standard |  |
| Dissolved Metals by ICP-MS - Suite A                   | EG020A-F   | 2  | 24      | 8.33   | 5.00     | ✓          | NEPM 2013 B3 & ALS QC Standard |  |
| Dissolved Metals by ICP-MS - Suite B                   | EG020B-F   | 1  | 9       | 11.11  | 5.00     | ✓          | NEPM 2013 B3 & ALS QC Standard |  |
| lajor Anions - Dissolved                               | ED040F     | 1  | 5       | 20.00  | 5.00     | ✓          | NEPM 2013 B3 & ALS QC Standard |  |
| lajor Cations - Dissolved                              | ED093F     | 1  | 20      | 5.00   | 5.00     | ✓          | NEPM 2013 B3 & ALS QC Standard |  |
| litrite and Nitrate as N (NOx) by Discrete Analyser    | EK059G     | 1  | 18      | 5.56   | 5.00     | ✓          | NEPM 2013 B3 & ALS QC Standard |  |
| litrite as N by Discrete Analyser                      | EK057G     | 1  | 5       | 20.00  | 5.00     | ✓          | NEPM 2013 B3 & ALS QC Standard |  |
| AH/Phenols (GC/MS - SIM)                               | EP075(SIM) | 1  | 6       | 16.67  | 5.00     | ✓          | NEPM 2013 B3 & ALS QC Standard |  |
| Sulfate (Turbidimetric) as SO4 2- by Discrete Analyser | ED041G     | 1  | 13      | 7.69   | 5.00     | ✓          | NEPM 2013 B3 & ALS QC Standard |  |
| otal Dissolved Solids (High Level)                     | EA015H     | 2  | 10      | 20.00  | 10.00    | ✓          | NEPM 2013 B3 & ALS QC Standard |  |
| RH - Semivolatile Fraction                             | EP071      | 1  | 6       | 16.67  | 5.00     | ✓          | NEPM 2013 B3 & ALS QC Standard |  |
| RH Volatiles/BTEX                                      | EP080      | 1  | 20      | 5.00   | 5.00     | ✓          | NEPM 2013 B3 & ALS QC Standard |  |
| lethod Blanks (MB)                                     |            |    |         |        |          |            |                                |  |
| Ammonia as N by Discrete analyser                      | EK055G     | 1  | 20      | 5.00   | 5.00     | ✓          | NEPM 2013 B3 & ALS QC Standard |  |
| Chloride by Discrete Analyser                          | ED045G     | 1  | 20      | 5.00   | 5.00     | ✓          | NEPM 2013 B3 & ALS QC Standard |  |
| Dissolved Mercury by FIMS                              | EG035F     | 1  | 11      | 9.09   | 5.00     | ✓          | NEPM 2013 B3 & ALS QC Standard |  |
| Dissolved Metals by ICP-MS - Suite A                   | EG020A-F   | 2  | 24      | 8.33   | 5.00     | 1          | NEPM 2013 B3 & ALS QC Standard |  |



| Matrix: WATER                                          |            |    |         | Evaluatio | n: × = Quality Co | ontrol frequency | not within specification ; ✓ = Quality Control frequency within specification |
|--------------------------------------------------------|------------|----|---------|-----------|-------------------|------------------|-------------------------------------------------------------------------------|
| Quality Control Sample Type                            |            | Сс | ount    |           | Rate (%)          |                  | Quality Control Specification                                                 |
| Analytical Methods                                     | Method     | OC | Reaular | Actual    | Expected          | Evaluation       |                                                                               |
| Method Blanks (MB) - Continued                         |            |    |         |           |                   |                  |                                                                               |
| Dissolved Metals by ICP-MS - Suite B                   | EG020B-F   | 1  | 9       | 11.11     | 5.00              | ✓                | NEPM 2013 B3 & ALS QC Standard                                                |
| Major Anions - Dissolved                               | ED040F     | 1  | 5       | 20.00     | 5.00              | ✓                | NEPM 2013 B3 & ALS QC Standard                                                |
| Major Cations - Dissolved                              | ED093F     | 1  | 20      | 5.00      | 5.00              | ✓                | NEPM 2013 B3 & ALS QC Standard                                                |
| Nitrite and Nitrate as N (NOx) by Discrete Analyser    | EK059G     | 1  | 18      | 5.56      | 5.00              | 1                | NEPM 2013 B3 & ALS QC Standard                                                |
| Nitrite as N by Discrete Analyser                      | EK057G     | 1  | 5       | 20.00     | 5.00              | ✓                | NEPM 2013 B3 & ALS QC Standard                                                |
| PAH/Phenols (GC/MS - SIM)                              | EP075(SIM) | 1  | 6       | 16.67     | 5.00              | ✓                | NEPM 2013 B3 & ALS QC Standard                                                |
| Sulfate (Turbidimetric) as SO4 2- by Discrete Analyser | ED041G     | 1  | 13      | 7.69      | 5.00              | 1                | NEPM 2013 B3 & ALS QC Standard                                                |
| Total Dissolved Solids (High Level)                    | EA015H     | 1  | 10      | 10.00     | 5.00              | ✓                | NEPM 2013 B3 & ALS QC Standard                                                |
| TRH - Semivolatile Fraction                            | EP071      | 1  | 6       | 16.67     | 5.00              | ✓                | NEPM 2013 B3 & ALS QC Standard                                                |
| TRH Volatiles/BTEX                                     | EP080      | 1  | 20      | 5.00      | 5.00              | ✓                | NEPM 2013 B3 & ALS QC Standard                                                |
| Matrix Spikes (MS)                                     |            |    |         |           |                   |                  |                                                                               |
| Ammonia as N by Discrete analyser                      | EK055G     | 1  | 20      | 5.00      | 5.00              | ✓                | NEPM 2013 B3 & ALS QC Standard                                                |
| Chloride by Discrete Analyser                          | ED045G     | 1  | 20      | 5.00      | 5.00              | ✓                | NEPM 2013 B3 & ALS QC Standard                                                |
| Dissolved Mercury by FIMS                              | EG035F     | 1  | 11      | 9.09      | 5.00              | ✓                | NEPM 2013 B3 & ALS QC Standard                                                |
| Dissolved Metals by ICP-MS - Suite A                   | EG020A-F   | 2  | 24      | 8.33      | 5.00              | ✓                | NEPM 2013 B3 & ALS QC Standard                                                |
| Nitrite and Nitrate as N (NOx) by Discrete Analyser    | EK059G     | 1  | 18      | 5.56      | 5.00              | ✓                | NEPM 2013 B3 & ALS QC Standard                                                |
| Nitrite as N by Discrete Analyser                      | EK057G     | 1  | 5       | 20.00     | 5.00              | ✓                | NEPM 2013 B3 & ALS QC Standard                                                |
| PAH/Phenols (GC/MS - SIM)                              | EP075(SIM) | 0  | 6       | 0.00      | 5.00              | x                | NEPM 2013 B3 & ALS QC Standard                                                |
| Sulfate (Turbidimetric) as SO4 2- by Discrete Analyser | ED041G     | 1  | 13      | 7.69      | 5.00              | ✓                | NEPM 2013 B3 & ALS QC Standard                                                |
| TRH - Semivolatile Fraction                            | EP071      | 0  | 6       | 0.00      | 5.00              | sc               | NEPM 2013 B3 & ALS QC Standard                                                |
| TRH Volatiles/BTEX                                     | EP080      | 1  | 20      | 5.00      | 5.00              | ✓                | NEPM 2013 B3 & ALS QC Standard                                                |



# **Brief Method Summaries**

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the US EPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request. The following report provides brief descriptions of the analytical procedures employed for results reported in the Certificate of Analysis. Sources from which ALS methods have been developed are provided within the Method Descriptions.

| Analytical Methods                                        | Method   | Matrix | Method Descriptions                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|-----------------------------------------------------------|----------|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Total Dissolved Solids (High Level)                       | EA015H   | WATER  | In house: Referenced to APHA 2540C. A gravimetric procedure that determines the amount of `filterable` residue in an aqueous sample. A well-mixed sample is filtered through a glass fibre filter (1.2um). The filtrate is evaporated to dryness and dried to constant weight at 180+/-5C. This method is compliant with NEPM (2013) Schedule B(3)                                                                                                                                              |
| Alkalinity by PC Titrator                                 | ED037-P  | WATER  | In house: Referenced to APHA 2320 B This procedure determines alkalinity by automated measurement (e.g. PC Titrate) using pH 4.5 for indicating the total alkalinity end-point. This method is compliant with NEPM (2013) Schedule B(3)                                                                                                                                                                                                                                                         |
| Major Anions - Dissolved                                  | ED040F   | WATER  | In house: Referenced to APHA 3120. The 0.45µm filtered samples are determined by ICP/AES for Sulfur and/or Silcon content and reported as Sulfate and/or Silca after conversion by gravimetric factor.                                                                                                                                                                                                                                                                                          |
| Sulfate (Turbidimetric) as SO4 2- by<br>Discrete Analyser | ED041G   | WATER  | In house: Referenced to APHA 4500-SO4. Dissolved sulfate is determined in a 0.45um filtered sample. Sulfate ions are converted to a barium sulfate suspension in an acetic acid medium with barium chloride. Light absorbance of the BaSO4 suspension is measured by a photometer and the SO4-2 concentration is determined by comparison of the reading with a standard curve. This method is compliant with NEPM (2013) Schedule B(3)                                                         |
| Chloride by Discrete Analyser                             | ED045G   | WATER  | In house: Referenced to APHA 4500 CI - G.The thiocyanate ion is liberated from mercuric thiocyanate through sequestration of mercury by the chloride ion to form non-ionised mercuric chloride.in the presence of ferric ions the librated thiocynate forms highly-coloured ferric thiocynate which is measured at 480 nm APHA 21st edition seal method 2 017-1-L april 2003                                                                                                                    |
| Major Cations - Dissolved                                 | ED093F   | WATER  | In house: Referenced to APHA 3120 and 3125; USEPA SW 846 - 6010 and 6020; Cations are determined by either ICP-AES or ICP-MS techniques. This method is compliant with NEPM (2013) Schedule B(3)<br>Sodium Adsorption Ratio is calculated from Ca, Mg and Na which determined by ALS in house method QWI-EN/ED093F. This method is compliant with NEPM (2013) Schedule B(3)<br>Hardness parameters are calculated based on APHA 2340 B. This method is compliant with NEPM (2013) Schedule B(3) |
| Dissolved Metals by ICP-MS - Suite A                      | EG020A-F | WATER  | In house: Referenced to APHA 3125; USEPA SW846 - 6020, ALS QWI-EN/EG020. Samples are 0.45µm filtered prior to analysis. The ICPMS technique utilizes a highly efficient argon plasma to ionize selected elements. Ions are then passed into a high vacuum mass spectrometer, which separates the analytes based on their distinct mass to charge ratios prior to their measurement by a discrete dynode ion detector.                                                                           |
| Dissolved Metals by ICP-MS - Suite B                      | EG020B-F | WATER  | In house: Referenced to APHA 3125; USEPA SW846 - 6020, ALS QWI-EN/EG020. Samples are 0.45µm filtered prior to analysis. The ICPMS technique utilizes a highly efficient argon plasma to ionize selected elements. Ions are then passed into a high vacuum mass spectrometer, which separates the analytes based on their distinct mass to charge ratios prior to their measurement by a discrete dynode ion detector.                                                                           |



| Analytical Methods                                     | Method     | Matrix | Method Descriptions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|--------------------------------------------------------|------------|--------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Dissolved Mercury by FIMS                              | EG035F     | WATER  | In house: Referenced to AS 3550, APHA 3112 Hg - B (Flow-injection (SnCl2)(Cold Vapour generation) AAS)<br>Samples are 0.45µm filtered prior to analysis. FIM-AAS is an automated flameless atomic absorption technique.<br>A bromate/bromide reagent is used to oxidise any organic mercury compounds in the filtered sample. The ionic<br>mercury is reduced online to atomic mercury vapour by SnCl2 which is then purged into a heated quartz cell.<br>Quantification is by comparing absorbance against a calibration curve. This method is compliant with NEPM<br>(2013) Schedule B(3) |
| Ammonia as N by Discrete analyser                      | EK055G     | WATER  | In house: Referenced to APHA 4500-NH3 G Ammonia is determined by direct colorimetry by Discrete Analyser. This method is compliant with NEPM (2013) Schedule B(3)                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Nitrite as N by Discrete Analyser                      | EK057G     | WATER  | In house: Referenced to APHA 4500-NO2- B. Nitrite is determined by direct colourimetry by Discrete Analyser. This method is compliant with NEPM (2013) Schedule B(3)                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Nitrate as N by Discrete Analyser                      | EK058G     | WATER  | In house: Referenced to APHA 4500-NO3- F. Nitrate is reduced to nitrite by way of a chemical reduction followed by quantification by Discrete Analyser. Nitrite is determined seperately by direct colourimetry and result for Nitrate calculated as the difference between the two results. This method is compliant with NEPM (2013) Schedule B(3)                                                                                                                                                                                                                                        |
| Nitrite and Nitrate as N (NOx) by Discrete<br>Analyser | EK059G     | WATER  | In house: Referenced to APHA 4500-NO3- F. Combined oxidised Nitrogen (NO2+NO3) is determined by Chemical Reduction and direct colourimetry by Discrete Analyser. This method is compliant with NEPM (2013) Schedule B(3)                                                                                                                                                                                                                                                                                                                                                                    |
| Ionic Balance by PCT DA and Turbi SO4<br>DA            | EN055 - PG | WATER  | In house: Referenced to APHA 1030F. This method is compliant with NEPM (2013) Schedule B(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| TRH - Semivolatile Fraction                            | EP071      | WATER  | In house: Referenced to USEPA SW 846 - 8015A The sample extract is analysed by Capillary GC/FID and quantification is by comparison against an established 5 point calibration curve of n-Alkane standards. This method is compliant with the QC requirements of NEPM (2013) Schedule B(3)                                                                                                                                                                                                                                                                                                  |
| PAH/Phenols (GC/MS - SIM)                              | EP075(SIM) | WATER  | In house: Referenced to USEPA SW 846 - 8270D Sample extracts are analysed by Capillary GC/MS in SIM Mode and quantification is by comparison against an established 5 point calibration curve. This method is compliant with NEPM (2013) Schedule B(3)                                                                                                                                                                                                                                                                                                                                      |
| TRH Volatiles/BTEX                                     | EP080      | WATER  | In house: Referenced to USEPA SW 846 - 8260B Water samples are directly purged prior to analysis by Capillary GC/MS and quantification is by comparison against an established 5 point calibration curve.<br>Alternatively, a sample is equilibrated in a headspace vial and a portion of the headspace determined by GCMS analysis. This method is compliant with the QC requirements of NEPM (2013) Schedule B(3)                                                                                                                                                                         |
| Preparation Methods                                    | Method     | Matrix | Method Descriptions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Separatory Funnel Extraction of Liquids                | ORG14      | WATER  | In house: Referenced to USEPA SW 846 - 3510B 100 mL to 1L of sample is transferred to a separatory funnel and serially extracted three times using 60mL DCM for each extract. The resultant extracts are combined, dehydrated and concentrated for analysis. This method is compliant with NEPM (2013) Schedule B(3). ALS default excludes sediment which may be resident in the container.                                                                                                                                                                                                 |
| Volatiles Water Preparation                            | ORG16-W    | WATER  | A 5 mL aliquot or 5 mL of a diluted sample is added to a 40 mL VOC vial for sparging.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |



\_\_\_\_

# SAMPLE RECEIPT NOTIFICATION (SRN)

| Work Order                   | : ES1818613                                                                                                                                                    |                         |                                                                                                                 |
|------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|-----------------------------------------------------------------------------------------------------------------|
| Client<br>Contact<br>Address | <ul> <li>HY-TEC INDUSTRIES PTY LTD</li> <li>MARK TAYLOR</li> <li>GATEWAY BUSINESS PARK 4/63-79</li> <li>PARRAMATTA RD</li> <li>SILVERWATER NSW 2128</li> </ul> | Contact :<br>Address :  | Environmental Division Sydney<br>Customer Services ES<br>277-289 Woodpark Road Smithfield<br>NSW Australia 2164 |
| E-mail                       | : mark.taylor@hy-tec.com.au                                                                                                                                    |                         | ALSEnviro.Sydney@alsglobal.com                                                                                  |
| Telephone<br>Facsimile       | :                                                                                                                                                              |                         | +61-2-8784 8555<br>+61-2-8784 8500                                                                              |
| T desimile                   | :                                                                                                                                                              |                         | +01-2-0764 6500                                                                                                 |
| Project                      | : Hytec Austen Quarry Baseline                                                                                                                                 | Page :                  | 1 of 3                                                                                                          |
| Order number                 | Groundwater Monitoring                                                                                                                                         | Quote number            |                                                                                                                 |
| C-O-C number                 | : 2201033833                                                                                                                                                   |                         | EB2017HYTIND0001 (EN/222/17)<br>NEPM 2013 B3 & ALS QC Standard                                                  |
| Site                         | :<br>·                                                                                                                                                         |                         | NEPM 2013 B3 & ALS QC Standard                                                                                  |
| Sampler                      | : James Morrow                                                                                                                                                 |                         |                                                                                                                 |
| Dates                        |                                                                                                                                                                |                         |                                                                                                                 |
| Date Samples Receive         | d : 26-Jun-2018 08:30                                                                                                                                          | Issue Date              | : 27-Jun-2018                                                                                                   |
| Client Requested Due Date    | : 02-Jul-2018                                                                                                                                                  | Scheduled Reporting Dat | e 02-Jul-2018                                                                                                   |
| Delivery Details             | 5                                                                                                                                                              |                         |                                                                                                                 |
| Mode of Delivery             | : Carrier                                                                                                                                                      | Security Seal           | : Intact.                                                                                                       |
| No. of coolers/boxes         | : 1                                                                                                                                                            | Temperature             | : 7.2 - Ice Bricks present                                                                                      |
| Receipt Detail               | :                                                                                                                                                              | No. of samples received | / analysed : 5 / 5                                                                                              |

## **General Comments**

- This report contains the following information:
  - Sample Container(s)/Preservation Non-Compliances
  - Summary of Sample(s) and Requested Analysis
  - Proactive Holding Time Report
  - Requested Deliverables
- 27/6/18: This is an updated SRN which indicates the removal of pH/EC/redox as per James as analysis was done in the field.
- Please refer to the Proactive Holding Time Report table below which summarises breaches of recommended holding times that have occurred prior to samples/instructions being received at the laboratory. The absence of this summary table indicates that all samples have been received within the recommended holding times for the analysis requested.
- Sample(s) requiring volatile organic compound analysis received in airtight containers (ZHE).
- Please direct any queries you have regarding this work order to the above ALS laboratory contact.
- Analytical work for this work order will be conducted at ALS Sydney.
- Sample Disposal Aqueous (3 weeks), Solid (2 months) from receipt of samples.



### Sample Container(s)/Preservation Non-Compliances

All comparisons are made against pretreatment/preservation AS, APHA, USEPA standards.

### • No sample container / preservation non-compliance exists.

### Summary of Sample(s) and Requested Analysis

Some items described below may be part of a laboratory process necessary for the execution of client requested tasks. Packages may contain additional analyses, such as the determination of moisture content and preparation tasks, that are included in the package.

If no sampling time is provided, the sampling time will default 00:00 on the date of sampling. If no sampling date is provided, the sampling date will be assumed by the laboratory and displayed in brackets without a time component

### Matrix: WATER

| component<br>Matrix: WATER<br>Laboratory sample<br>ID | Client sampling<br>date / time | Client sample ID | WATER - EA015H<br>Total Dissolved So | WATER - ED040F<br>Dissolved Major Ar | WATER - EG020F<br>Dissolved Metals b | WATER - EG035F<br>Dissolved Mercury | WATER - EK055G<br>Ammonia as N By I | WATER - NT-01 &<br>Ca, Mg, Na, K, Cl, | WATER - NT-04<br>Nitrite and Nitrate |
|-------------------------------------------------------|--------------------------------|------------------|--------------------------------------|--------------------------------------|--------------------------------------|-------------------------------------|-------------------------------------|---------------------------------------|--------------------------------------|
| ES1818613-001                                         | 22-Jun-2018 00:00              | MB01S            | ✓                                    | 1                                    | 1                                    | 1                                   | ✓                                   | 1                                     | ✓                                    |
| ES1818613-002                                         | 22-Jun-2018 00:00              | MB01D            | <ul> <li>✓</li> </ul>                | ✓                                    | ✓                                    | ✓                                   | ✓                                   | ✓                                     | ✓                                    |
| ES1818613-003                                         | 22-Jun-2018 00:00              | MB02             | <ul> <li>✓</li> </ul>                | ✓                                    | 1                                    | ✓                                   | ✓                                   | ✓                                     | ✓                                    |
| ES1818613-004                                         | 22-Jun-2018 00:00              | Pit              | <ul> <li>✓</li> </ul>                | 1                                    | ✓                                    | ✓                                   | ✓                                   | ✓                                     | ✓                                    |
| ES1818613-005                                         | 22-Jun-2018 00:00              | DUPB             | ✓                                    | 1                                    | 1                                    | ✓                                   | ✓                                   | ✓                                     | ✓                                    |

Level

Ived Solids - Standard

letals by ICP/MS

**Aajor Anions** 

s N By Discrete Analyser

۲۲-01 & 02 ۱, K, Cl, SO4, Alkalinity

| Matrix: WATER           |                                |                  | WATER - W-07<br>TRH/BTEXN/PAH |
|-------------------------|--------------------------------|------------------|-------------------------------|
| Laboratory sample<br>ID | Client sampling<br>date / time | Client sample ID | WATEI<br>TRH/B                |
| ES1818613-004           | 22-Jun-2018 00:00              | Pit              | ✓                             |
| ES1818613-005           | 22-Jun-2018 00:00              | DUPB             | ✓                             |

# Proactive Holding Time Report

The following table summarises breaches of recommended holding times that have occurred prior to samples/instructions being received at the laboratory.

| Matrix: WATER       |                                |            | I           | Evaluation: × = Ho | olding time br | each ; 🗸 = Withi | n holding time. |
|---------------------|--------------------------------|------------|-------------|--------------------|----------------|------------------|-----------------|
| Method              |                                | Due for    | Due for     | Samples R          | eceived        | Instructions     | Received        |
| Client Sample ID(s) | Container                      | extraction | analysis    | Date               | Evaluation     | Date             | Evaluation      |
| EA005-P: pH by PC   | Titrator                       |            |             |                    |                |                  |                 |
| DUPB                | Clear Plastic Bottle - Natural |            | 22-Jun-2018 | 26-Jun-2018        | ×              |                  |                 |
| MB01D               | Clear Plastic Bottle - Natural |            | 22-Jun-2018 | 26-Jun-2018        | ×              |                  |                 |
| MB01S               | Clear Plastic Bottle - Natural |            | 22-Jun-2018 | 26-Jun-2018        | ×              |                  |                 |
| MB02                | Clear Plastic Bottle - Natural |            | 22-Jun-2018 | 26-Jun-2018        | ×              |                  |                 |
| Pit                 | Clear Plastic Bottle - Natural |            | 22-Jun-2018 | 26-Jun-2018        | ×              |                  |                 |
| EK057G: Nitrite as  | N by Discrete Analyser         |            |             |                    |                |                  |                 |
| DUPB                | Clear Plastic Bottle - Natural |            | 24-Jun-2018 | 26-Jun-2018        | ×              |                  |                 |
| MB01D               | Clear Plastic Bottle - Natural |            | 24-Jun-2018 | 26-Jun-2018        | ×              |                  |                 |
| MB01S               | Clear Plastic Bottle - Natural |            | 24-Jun-2018 | 26-Jun-2018        | ×              |                  |                 |

| : 3 of 3<br>ES1818613 Amendment 0<br>: HY-TEC INDUSTRIES PT | Y LTD |             |             |   | LS)  |  |
|-------------------------------------------------------------|-------|-------------|-------------|---|------|--|
| Clear Plastic Bottle - Natural                              |       | 24-Jun-2018 | 26-Jun-2018 | × | <br> |  |
| Clear Plastic Bottle - Natural                              |       | 24-Jun-2018 | 26-Jun-2018 |   | <br> |  |

# Requested Deliverables

## ACCOUNT

Pit

| Account                                                                       |       |                               |
|-------------------------------------------------------------------------------|-------|-------------------------------|
| - A4 - AU Tax Invoice (INV)                                                   | Email | accountspayable@hy-tec.com.au |
| MARK TAYLOR                                                                   |       |                               |
| <ul> <li>*AU Certificate of Analysis - NATA (COA)</li> </ul>                  | Email | mark.taylor@hy-tec.com.au     |
| <ul> <li>*AU Interpretive QC Report - DEFAULT (Anon QCI Rep) (QCI)</li> </ul> | Email | mark.taylor@hy-tec.com.au     |
| <ul> <li>*AU QC Report - DEFAULT (Anon QC Rep) - NATA (QC)</li> </ul>         | Email | mark.taylor@hy-tec.com.au     |
| - A4 - AU Sample Receipt Notification - Environmental HT (SRN)                | Email | mark.taylor@hy-tec.com.au     |
| - Chain of Custody (CoC) (COC)                                                | Email | mark.taylor@hy-tec.com.au     |
| - EDI Format - ENMRG (ENMRG)                                                  | Email | mark.taylor@hy-tec.com.au     |
| - EDI Format - XTab (XTAB)                                                    | Email | mark.taylor@hy-tec.com.au     |
|                                                                               |       |                               |

|                            |                                               |                                                              | CHA:            | <b>CHAIN OF CUSTODY -</b> | S                       | Б         | PY                     | -          | Client                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Ŧ          |            |                                                                                  |                                                                               |
|----------------------------|-----------------------------------------------|--------------------------------------------------------------|-----------------|---------------------------|-------------------------|-----------|------------------------|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|------------|----------------------------------------------------------------------------------|-------------------------------------------------------------------------------|
| Client: Hy-Tec             |                                               |                                                              |                 |                           | Client                  | Project   | Name /                 | Numb       | Client Project Name / Number / Site etc (ie report title):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | etc (ie    | report     | : title):                                                                        | ALS                                                                           |
| Contact person: Jai        | Contact person: James Morrow ph: 0407 875 302 | 7 875 302                                                    |                 |                           | -                       | lytec A   | usten Q                | uarry I    | taseline (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | round      | water      | Hytec Austen Quarry Baseline Groundwater Monitoring                              | 277-289 Smithpark Road, Smithfield, NSW                                       |
| Project Mgr: James Morrow  | Morrow                                        |                                                              |                 |                           | PO No.:                 |           |                        |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |            |                                                                                  | Phone: 02 87848555                                                            |
| Sampler: James Morrow      | lorrow                                        |                                                              |                 |                           | Enviro                  | ab Quo    | Envirolab Quote No. :  |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |            |                                                                                  | E-mail:                                                                       |
| Address: Austen Qu         | uarry, 391 Jenolan Ca                         | Address: Austen Quarry, 391 Jenolan Caves Road, Hartley, NSW | W               |                           |                         |           |                        | s          | Standard TAT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Ă          |            |                                                                                  | Contact:                                                                      |
|                            |                                               |                                                              |                 |                           | 0,                      |           |                        |            | or the C / yeb C / yeb and a method is a frequent of the frequency of the second of th | c / veh    | / veh      | ひんつく                                                                             |                                                                               |
| Dhone:                     |                                               | Moh                                                          | 0478855447      | -                         | Note: In                | form lab  | in advanci             | e if uraei | it turnarour                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ud is reau | lired - su | Note: Inform lab in advance if uncent turnaround is required - surcharge applies |                                                                               |
|                            |                                               |                                                              |                 |                           | Lab comments:           | mment     | S                      |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |            | :                                                                                | _1                                                                            |
| Email:                     |                                               |                                                              |                 |                           |                         |           |                        | I          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |            |                                                                                  |                                                                               |
|                            | Sa                                            | Sample information                                           |                 |                           | -                       |           | . ,                    |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Te         | sts Re     | Tests Required                                                                   | Comments                                                                      |
|                            |                                               |                                                              |                 |                           | te (see<br>low)         | (, PAHs   |                        |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |            |                                                                                  | Provide as much                                                               |
| Envirolad<br>Sample ID     | Cirent sample 10 or<br>information            | Depth                                                        | Date<br>sampled | Type of sample            | Hy-tec Suil<br>table be | TRH, BTEX |                        |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |            |                                                                                  | information about the<br>sample as you can                                    |
| -                          | MB01S                                         |                                                              | 22-Jun-18       | Water                     | ×                       |           |                        |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |            |                                                                                  |                                                                               |
| 2                          | MB01D                                         |                                                              | 22-Jun-18       | Water                     | ×                       |           |                        |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |            |                                                                                  | Environmental Division                                                        |
| 3                          | MB02                                          | -                                                            | 22-Jun-18       | Water                     | ×                       |           |                        |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |            |                                                                                  | Sydney<br>Work Order Reference                                                |
| 4                          | Pit                                           |                                                              | 22-Jun-18       | Water                     | ×                       | ×         |                        |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |            |                                                                                  | FS1818613                                                                     |
| 2                          | DUPB                                          | I                                                            | 22-Jun-18       | Water                     | ×                       | ×         |                        |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |            |                                                                                  |                                                                               |
|                            |                                               |                                                              |                 |                           |                         |           |                        | _          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |            |                                                                                  |                                                                               |
|                            |                                               |                                                              |                 |                           |                         |           |                        |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |            |                                                                                  |                                                                               |
|                            |                                               |                                                              |                 |                           |                         |           |                        |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |            |                                                                                  |                                                                               |
|                            | 3                                             |                                                              |                 |                           |                         |           |                        |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |            |                                                                                  | Telephone : + 61-2-8784 8555                                                  |
| Relinquished by (company): |                                               | Hytec                                                        |                 |                           | Receiv                  | ed by (   | Received by (company): | K II       | -arealy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 4          | ACZ        |                                                                                  | Lab use only:                                                                 |
| Print Name:                |                                               | Mark Taylor                                                  |                 |                           | Print Name:             | ame:      | a                      | -          | C.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |            |            |                                                                                  | Samples Received: Cool or Ambient (circle one)                                |
| Date & Time:               |                                               | 11/01/2018                                                   |                 |                           | Date & Time:            | Time:     | b                      | 79/97      | 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |            |            |                                                                                  | Temperature Received at: (if applicable)                                      |
| Signature:                 | 7                                             | MT                                                           |                 |                           | Signature:              | ure:      |                        | 0          | 5:30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |            |            |                                                                                  | d / couri                                                                     |
|                            |                                               |                                                              |                 |                           |                         |           |                        |            | Wh                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ite - Li   | нр сор     | y∕Blue - Cli                                                                     | White - Lab copy / Blue - Client copy / Pink - Retain in Book Page No: 1 of 1 |

ļ

Form: 302 - Chain of Custody-Client, Issued 16/03/10, Version 4, Page 1 of 1.

|                                | Nitrito         |                          |
|--------------------------------|-----------------|--------------------------|
|                                | Nitrate         | Nutrients                |
| E.                             | Ammonia         |                          |
|                                | Zinc            |                          |
| п                              | Vanadium        |                          |
|                                | Titanium        |                          |
| п<br>—                         | Strontium       |                          |
|                                | Silver          |                          |
|                                | Silicon         |                          |
|                                | Selenium        |                          |
|                                | Nickel          |                          |
| num                            | Molybdenum      |                          |
|                                | Mercury         |                          |
| Se                             | Manganese       |                          |
|                                | Lead            | Heavy Metals (Dissolved) |
|                                | Iron            |                          |
|                                | Copper          |                          |
|                                | Cobalt          |                          |
| 3                              | Chromium        |                          |
| _                              | Cadmium         |                          |
|                                | Beryllium       |                          |
|                                | Barium          |                          |
|                                | Boron           |                          |
|                                | Arsenic         |                          |
| 3                              | Aluminium       |                          |
| ate as CaCO <sub>3</sub>       | Bicarbonate     |                          |
| Carbonate as CaCO <sub>3</sub> | Carbonat        |                          |
| e as CaCO <sub>3</sub>         | Hydroxide       | Major Anions             |
|                                | Chloride        |                          |
|                                | Sulphate        |                          |
| э                              | Potassium       |                          |
|                                | Sodium          |                          |
|                                | Calcium         | Maior Cations            |
| m                              | Magnesium       |                          |
| solved Solids                  | Total Dissolved | Dissolved Solids         |
| co, pri, cii, renipelature     | EC, pri, e      | (measure in field)       |
|                                |                 | Physical Parameters      |
|                                | Analyte         | Analyte Group            |
| Groundwater Suite              | Indw            | HYTEC Grou               |
|                                |                 | •                        |

# Attachment F

Pit Water Level Monitoring Photographs



Photograph of measuring post in pit sump. Taken 9am on 21 June 2018.



Photograph of measuring post in pit sump. Taken 9am on 22 June 2018.



Photograph of pit from the lookout. Photo taken at 0930am on 21 June 2018. The pit sump is visible at the far (north east) end of the pit.

# Attachment G

Analytical Results Summary Table

#### Table G1 Baseline Analytical Data Summary - January 2018 to June 2018

|                                 |                      | ANZECC (2000) | Aust. Drinking Water | 10/01/2018 | 22/06/2018 | 10/01/2018 | 22/06/2018 | 10/01/2018 | 22/06/2018 | 10/01/2018                                                   | 22/06/2018                       | Units |
|---------------------------------|----------------------|---------------|----------------------|------------|------------|------------|------------|------------|------------|--------------------------------------------------------------|----------------------------------|-------|
|                                 |                      | 2000 (Fresh)  | 2011                 | MB01S      | MB01S      | MB01D      | MB01D      | MB02       | MB02       | PIT                                                          | Pit                              |       |
|                                 |                      |               |                      |            |            |            |            |            |            |                                                              |                                  |       |
|                                 | Calcium              | -             | -                    | 66         | 74         | 144        | 150        | 52         | 71         | 71                                                           | 49                               | mg/L  |
| Major Cations (mg/l.)           | Magnesium            | -             | -                    | 14         | 13         | 16         | 15         | 24         | 31         | 45                                                           | 26                               | mg/L  |
| Major Cations (mg/L)            | Sodium               | -             | -                    | 23         | 22         | 95         | 59         | 200        | 190        | 26                                                           | 25                               | mg/L  |
|                                 | Potassium            | -             | -                    | 1          | 1          | 3          | 1          | 2          | 2          | 4                                                            | 3                                | mg/L  |
|                                 | Sulphate             | -             | -                    | 22         | 23         | 259        | 248        | 120        | 127        | 183                                                          | 98                               | mg/L  |
|                                 | Chloride             | -             | -                    | 43         | 44         | 58         | 23         | 68         | 78         | 9                                                            | 10                               | mg/L  |
| Major Anions (mg/L)             | Hydroxide as CaCO3   | -             | -                    | <1         | <1         | <1         | <1         | <1         | <1         | <1                                                           | <1                               | mg/L  |
|                                 | Carbonate as CaCO3   | -             | -                    | <1         | <1         | <1         | <1         | <1         | <1         | <1                                                           | <1                               | mg/L  |
|                                 | Bicarbonate as CaCO3 | -             | -                    | 216        | 232        | 307        | 335        | 476        | 520        | 181                                                          | 201                              | mg/L  |
|                                 | Aluminium            | 0.055         | -                    | <0.01      | <0.01      | <0.01      | <0.01      | <0.01      | <0.01      | <0.01                                                        | <0.01                            | mg/L  |
|                                 | Arsenic              | 0.013         | 0.01                 | 0.003      | 0.001      | 0.005      | 0.005      | 0.004      | 0.004      | <0.001                                                       | <0.001                           | mg/L  |
|                                 | Boron                | 0.37          | 4                    | <0.05      | <0.05      | 0.33       | 0.32       | 0.32       | 0.27       | <0.05                                                        | <0.05                            | mg/L  |
|                                 | Barium               | -             | 2                    | 0.015      | 0.013      | 0.08       | 0.055      | 0.065      | 0.085      | 0.032                                                        | 0.029                            | mg/L  |
|                                 | Beryllium            | -             | 0.06                 | <0.001     | <0.001     | <0.001     | <0.001     | <0.001     | <0.001     | <0.001                                                       | <0.001                           | mg/L  |
|                                 | Cadmium              | 0.0002        | 0.002                | <0.0001    | <0.0001    | <0.0001    | <0.0001    | <0.0001    | <0.0001    | 0.0088                                                       | 0.0019                           | mg/L  |
|                                 | Chromium             | 0.001         | 0.05                 | <0.001     | <0.001     | <0.001     | <0.001     | <0.001     | <0.001     | <0.001                                                       | <0.001                           | mg/L  |
|                                 | Cobalt               | -             | -                    | <0.001     | <0.001     | 0.002      | 0.003      | <0.001     | <0.001     | 0.003                                                        | <0.001                           | mg/L  |
|                                 | Copper               | 0.0014        | 2                    | 0.001      | <0.001     | <0.001     | <0.001     | <0.001     | <0.001     | <0.001                                                       | <0.001                           | mg/L  |
|                                 | Iron                 | -             | -                    | <0.05      | <0.05      | <0.05      | <0.05      | <0.05      | <0.05      | <0.05                                                        | <0.05                            | mg/L  |
| Heavy Metals (Dissolved) (mg/L) | Lead                 | 0.0034        | 0.01                 | <0.001     | <0.001     | <0.001     | <0.001     | <0.001     | <0.001     | <0.001                                                       | <0.001                           | mg/L  |
|                                 | Manganese            | 1.9           | 0.5                  | 0.123      | 0.153      | 0.353      | 0.53       | 0.038      | 0.046      | 2                                                            | 0.188                            | mg/L  |
|                                 | Mercury              | 0.6           | 0.001                | <0.0001    | <0.0001    | <0.0001    | <0.0001    | <0.0001    | <0.0001    | <0.0001                                                      | <0.0001                          | mg/L  |
|                                 | Molybdenum           | -             | 0.05                 | 0.002      | <0.001     | 0.03       | 0.004      | 0.009      | 0.002      | 0.004                                                        | <0.001                           | mg/L  |
|                                 | Nickel               | 0.011         | 0.02                 | 0.001      | <0.001     | 0.018      | 0.003      | 0.003      | 0.002      | 0.008                                                        | 0.001                            | mg/L  |
|                                 | Selenium             | 0.005         | 0.01                 | <0.01      | <0.01      | <0.01      | <0.01      | <0.01      | <0.01      | <0.01                                                        | <0.01                            | mg/L  |
|                                 | Silicon              | -             | -                    | 9.15       | 10.1       | 24.4       | 31.6       | 9.6        | 11.3       | 15.2                                                         | 19.4                             | mg/L  |
|                                 | Silver               | 0.00005       | 0.01                 | <0.001     | <0.001     | <0.001     | <0.001     | <0.001     | <0.001     | <0.001                                                       | <0.001                           | mg/L  |
|                                 | Strontium            | -             | -                    | 0.208      | 0.245      | 0.897      | 0.897      | 2.36       | 3.01       | 0.298                                                        | 0.231                            | mg/L  |
|                                 | Titanium             | -             | -                    | <0.01      | <0.01      | <0.01      | <0.01      | <0.01      | <0.01      | <0.01                                                        | <0.01                            | mg/L  |
|                                 | Vanadium             | -             | -                    | <0.01      | <0.01      | <0.01      | <0.01      | <0.01      | <0.01      | <0.01                                                        | <0.01                            | mg/L  |
|                                 | Zinc                 | 0.008         | -                    | 0.03       | <0.005     | <0.005     | 0.006      | <0.005     | <0.005     | 0.443                                                        | 0.16                             | mg/L  |
|                                 | Nitrate*             | 10 (asN)      | 50 (as NO3)          | 0.05       | <0.01      | 0.08       | <0.01      | <0.01      | <0.01      | 4.45                                                         | 0.48                             | mg/L  |
| Nutrients (mg/L)                | Nitrite              | None          | -                    | <0.01      | <0.01      | <0.01      | <0.01      | <0.01      | <0.01      | 0.01                                                         | <0.01                            | mg/L  |
|                                 | Ammonia              | 0.9           | -                    | 0.03       | 0.05       | 0.03       | 0.02       | <0.01      | 0.08       | 0.4                                                          | 0.05                             | mg/L  |
|                                 | TRH                  | -             | -                    | -          | -          | -          | -          | -          | -          | <eql< td=""><td><eql< td=""><td>ug/L</td></eql<></td></eql<> | <eql< td=""><td>ug/L</td></eql<> | ug/L  |
|                                 | Benzene              | 950           | 1                    | -          | -          | -          | -          | -          | -          | <1                                                           | <1                               | ug/L  |
|                                 | Toluene              | -             | 800                  | -          | -          | -          | -          | -          | -          | <2                                                           | <2                               | ug/L  |
| Hydrocarbons (ug/L)             | Ethylbenzene         | -             | 300                  | -          | -          | -          | -          | -          | -          | <2                                                           | <2                               | ug/L  |
|                                 | Xylene               | 200           | 600                  | -          | -          | -          | -          | -          | -          | <2                                                           | <2                               | ug/L  |
|                                 | Naphthalene          | 16            | -                    | -          | -          | -          | -          | -          | -          | <5                                                           | <5                               | ug/L  |
|                                 | Benzo(a)pyrene       | -             | 0.01                 | -          | -          | -          | -          | -          | -          | <0.5                                                         | <0.5                             | ug/L  |