

ABN: 32 160 178 656

22 Tamworth Street PO Box 6278 DUBBO NSW 2830

Ph: 0407 875 302 Fax: (02) 8607 8122 admin@grounddoc.com.au

30 July 2019

Hy-tec Industries Pty Ltd Austen Quarry 391 Jenolan Caves Road Hartley NSW 2790 rod.welsh@adbri.com.au

Attention: Mr Rodd Welsh

Dear Rodd,

RE: JULY 2019 GROUNDWATER MONITORING RESULTS, AUSTEN QUARRY, HARTLEY, NSW

Ground Doctor was engaged by Hy-tec Industries Pty Ltd (Hy-tec) to undertake the July 2019 round of baseline groundwater monitoring at the Austen Quarry, 391 Jenolan Caves Road, Hartley, NSW (the site).

1 Background Information

The Stage 2 Expansion of the Austen Quarry was approved on 15 July 2015 (development application SSD-6084). An updated site specific Water Management Plan (WMP) (Groundwork Plus, 2017) was developed as required by the conditions of consent for development. The WMP included provisions for managing both surface water and groundwater impacts at the site. The revised WMP was approved in late 2017.

The WMP required the establishment of groundwater monitoring bores at three locations around the periphery of the open pit, establishment of water level data loggers in each bore and collection of four rounds of baseline groundwater quality over two years following establishment of the monitoring bores.

The monitoring bores were established in December 2017. Ground Doctor conducted the first round of baseline monitoring in early January 2018. Water level loggers were installed into the monitoring bores at the completion of the January 2018 monitoring round. Subsequent monitoring was conducted in June 2018 and January 2019.

2 Objectives

The objectives of the work undertaken was to complete the fourth round (July 2019) of baseline groundwater monitoring in accordance with the WMP.

3 Monitoring Bore Locations

The monitoring bore locations are shown on *Figure 1* of *Attachment A*. Monitoring bore coordinates and details are summarised in *Table 1*. *Table 1* also presents a summary of the monitoring bore construction details.

Table 1: Monitoring Bore Construction Details

Bore ID	Easting	Northing	Approx. Surface Elevation (AHD)	Depth to Bottom (btc)	Screened Intervals (bgl)	Stickup (agl)
MB01S	235245	6281077	700m	7.42m	3.7-6.7m	0.8m
MB01D	235259	6281098	700m	29.30m	20-23m 26-28.5m	0.8m
MB02	235915	6280398	710m	29.10m	10.5-13.5m 22.5-28.5m	0.6m
MB03	236419	6281786	690m	25.31m	18.5-24.5m	0.4m

Eastings and northings are MGA Zone 56.

4 Groundwater Sampling Methodology

Each monitoring bore was gauged using an electronic dip meter prior to any disturbance of the water column. Bores were gauged on 2 July 2019. The depth to water was measured from the top of casing at each bore. MB03 was installed into a dry hole and the hole was found to be dry at the time of gauging.

The water level logger was removed from each borehole following gauging. Data stored within the water level loggers were downloaded on 3 July 2019. The water level loggers were reinstated in each monitoring bore following sampling on the morning of 3 July 2019.

Deep bores were purged dry using a bore specific disposable bailer. The deep bores were bailed dry on 2 July 2019. The wells were allowed to recover for a period of approximately 18 hours prior to sample collection. The bailer was lowered gently into the deep bores to collect samples that were free of suspended sediment. After samples had been collected additional water was bailed from the deep bores to allow measurement of field water quality parameters.

The shallow bore (MB01S) was purged by removing approximately 50L (approximately 8 well volumes) prior to sampling. The well was allowed to recover for a period of approximately 10 minutes prior to sampling. Water quality parameters were measured regularly during purging of MB01S to assess the effectiveness of purging as well as being measured at the time of sampling.

A water sample was collected from standing water in the pit floor on 3 July 2019. An unpreserved sample bottle was filled directly from the ponded water in the sump. This bottle was then used to fill preserved sample bottles and samples requiring field filtering. Once sampling was complete field water quality parameters were measured. The water quality meter was placed in the pond and allowed to equilibrate for a period of approximately 10 minutes. The field water quality parameters were then recorded.

Water quality parameters were measured in Yorkeys Creek adjacent to MB01S on 3 July 2019. The water quality meter was left to equilibrate within standing water in the Creek for a period of approximately 10 minutes prior to recording the results. This location does not form part of the monitoring requirements outlined in the WMP, however, the data was collected to compliment

btc = below top of casing

bgl = below ground level

agl = above ground level

shallow groundwater measurements in the nearby MB01S, which may interact with water in the Creek or vice versa.

Water quality measurements were made using a YSI water quality meter hired from Airmet Scientific. The meter was calibrated prior to dispatch. A calibration record for the water quality meter is presented as *Attachment C*.

Water samples were collected into laboratory supplied bottles, each marked with the appropriate identification. Sample bottles were appropriately preserved where necessary. The samples for dissolved metals analysis were filtered in the field using disposable 45µm filters. The sampler wore disposable nitrile gloves at all times during sampling to minimise potential for cross contamination. Samples were placed into an esky with ice immediately after collection. Ice was replenished as required to ensure samples remained cool whilst in storage.

Water samples were dispatched to Envirolab (Sydney) on the afternoon of 3 July 2019. An overnight courier service was used to minimise transit time. Samples were received by Envirolab on the morning of 4 July 2019.

Groundwater samples collected from each monitoring bore were analysed for major cations, major anions, nutrients and dissolved metals as specified in Table 37 of the WMP (Groundwork Plus, 2017). The water samples collected from the pit were analysed for major cations, major anions, nutrients, dissolved metals, total recoverable hydrocarbons (TRH), benzene, toluene, ethylbenzene, xylenes (BTEX) and polycyclic aromatic hydrocarbons (PAHs) as specified in Table 37 of the WMP (Groundwork Plus, 2017).

5 Field Observations

Field observations were recorded on bore sampling forms, which are presented as *Attachment B*. Depth to water results and measured field parameters at the time of sampling are presented in *Table 2* with data collected during the three previous monitoring rounds.

Table 2: Summary of Field Observations - All Monitoring Rounds

Bore ID	Date	DTW (m btc)	Temp (oC)	DO (ppm)	EC (uS/cm)	рН	ORP (mV)
MB01S	Jan-18	4.63m	15.9	6.08	575	6.27	-11.6
	Jun-18	4.48m	16.5	5.41	343	7.41	94
	Jan-19	4.42m	15.7	3.95	495	7.29	122
	Jul-19	4.36m	15.7	4.37	465	7.52	97
MB01D	Jan-18	5.49m	16.7	2.64	1170	7.02	-22
	Jun-18	1.94m	14.7	1.56	779	7.44	85
	Jan-19	2.08m	17.3	1.41	931	7.58	95
	Jul-19	4.55m	15.4	5.68	666	7.36	89
MB02	Jan-18	17.43m	16.4	3.73	1210	7.03	-5
	Jun-18	17.54m	12.9	5.08	927	7.32	130
	Jan-19	17.74m	16.3	1.77	1180	7.27	127
	Jul-19	17.82m	13.8	4.10	1083	7.39	139
MB03	Jan-18	Dry	-	-	=	=	-
	Jun-18	Dry	-	-	-	-	-
	Jan-19	Dry	-	-	=	=	-
	Jul-19	Dry	-	-	-	-	-
Pit Water	Jan-18	-	21.9	4.30	820	7.00	8
	Jun-18	-	7.6	6.97	357	7.01	119
	Jan-19	-	25.2	5.30	794	8.20	91
	Jul-19	-	7.9	9.50	536	8.33	129
Yorkeys Creek	Jan-18	-	-	-	-	-	-
	Jun-18	-	6.7	12.25	353	7.93	104
	Jan-19	-	21.3	2.31	469	7.53	93
	Jul-19	-	3.5	9.64	314	8.64	57

6 Analytical Results

The certificate of analysis for water samples is presented as *Attachment E*.

A summary of analytical data is presented in *Table F1* of *Attachment F*. The summary table presents January 2018, June 2018, January 2019 and July 2019 baseline groundwater quality against preliminary triggers outlined in the WMP (Groundwork Plus, 2017).

Four rounds of data have been collected from the site to date with the aim of establishing a baseline.

Exceedances of preliminary triggers across all monitoring rounds were as follows:

- The reported zinc concentration in the water sample collected from "MB01S" exceeded the ANZECC (2000) threshold for 95% protection of fresh water aquatic ecosystems in the January 2018 monitoring round.
- The reported zinc concentration in the water sample collected from the "Pit" exceeded the ANZECC (2000) threshold for 95% protection of fresh water aquatic ecosystems in the January 2018 and June 2018 monitoring rounds.
- The report manganese concentration in the sample collected from the "Pit" exceeded the Australian Drinking Water (2011) and ANZECC (2000) threshold for 95% protection of fresh water aquatic ecosystems in the January 2018 monitoring round.
- The report manganese concentration in the sample collected from "MB01D" exceeded the Australian Drinking Water (2011) threshold in the June 2018 monitoring round.
- The reported cadmium concentration in the water sample collected from the "Pit" exceeded
 the ANZECC (2000) threshold for 95% protection of fresh water aquatic ecosystems and/or
 the Australian Drinking Water (2011) threshold in the January 2018 and June 2018
 monitoring rounds.
- The reported nickel concentration in the water sample collected from the "MB01D" exceeded the ANZECC (2000) threshold for 95% protection of fresh water aquatic ecosystems in the January 2018 monitoring round.

Reported analyte concentrations in water samples collected during the January 2019 and July 2019 monitoring round were less than the preliminary triggers outlined in the WMP. Results indicate that early exceedances may have been associated with the effects of borehole drilling and monitoring bore installation.

Four rounds of baseline data have provided a spread of results that can be used as a baseline against which any future impacts (if any) can be compared.

7 Water Level Logger Data

All water level loggers were set to record water level at 6 hour intervals commencing 12am on 12 January 2018. The water level data loggers were not vented. A barologger was deployed to record air pressure at the same recording interval to allow water level logger readings to be corrected to account for changes in air pressure.

Water level data loggers installed in MB01S, MB01D and MB02, and the barometric pressure logger installed at MB03, were downloaded on 3 July 2019.

The raw data was corrected for changes in air pressure using the barometric pressure data. The manual water level measurement collected at the time the loggers were removed from each borehole

were used to convert the water level logger data to a depth to water relative to the top of the PVC bore casing.

At the completion of the monitoring round the water level loggers were redeployed in their respective boreholes.

Corrected water level data is presented graphically as *Attachment D*.

7.1 MB01S

The water level in MB01S was relatively consistent over the 18 month monitoring period with variation between approximately 4.2m below top of casing and 4.9m below top of casing. Variation is inferred to be directly related to water level changes in the adjacent Yorkeys Creek.

7.2 MB01D

The water level within MB01D stayed below the water level logger for a period of approximately 3 weeks after each groundwater monitoring event owing to the slow rate of groundwater recharge following purging and sampling of the bore. Once groundwater had risen above the data logger in MB01D the depth to water varied by more than 4m over the monitoring period, with results ranging from as little as 0.8m to 5.6m below top of casing. The reason for variation in MB01D is not well understood but should become more apparent with the collection of longer term water level data. It is possible that water level changes at MB01D are related to accumulation of water within the base of the Quarry during periods of wet weather, and subsequent dewatering of the excavation.

Relative elevation data is not available for the monitoring bore network. MB01S and MB01D are located approximately 20m apart. The top of casing at MB01D is estimated to be at least 1m above the top of casing at MB01S. The standing water level within MB01D is generally higher than that in MB01S. This indicates an upward gradient with potential for groundwater intersected from the deeper bore to discharge into Yorkeys Creek.

7.3 MB02

The drawdown effects of purging and sampling are evident in the water level data for MB02 for approximately 48hours after each monitoring event. Stabilised water level readings for MB02 are relatively uniform, with a minor decreasing trend across the 18 month monitoring period from approximately 17.4m to 17.8m below top of casing.

If you have any questions regarding the works outlined in this report please contact the undersigned on 0407 875 302.

Kind Regards

James Morrow

Environmental Engineer Ground Doctor Pty Ltd

2018-GD001-L4

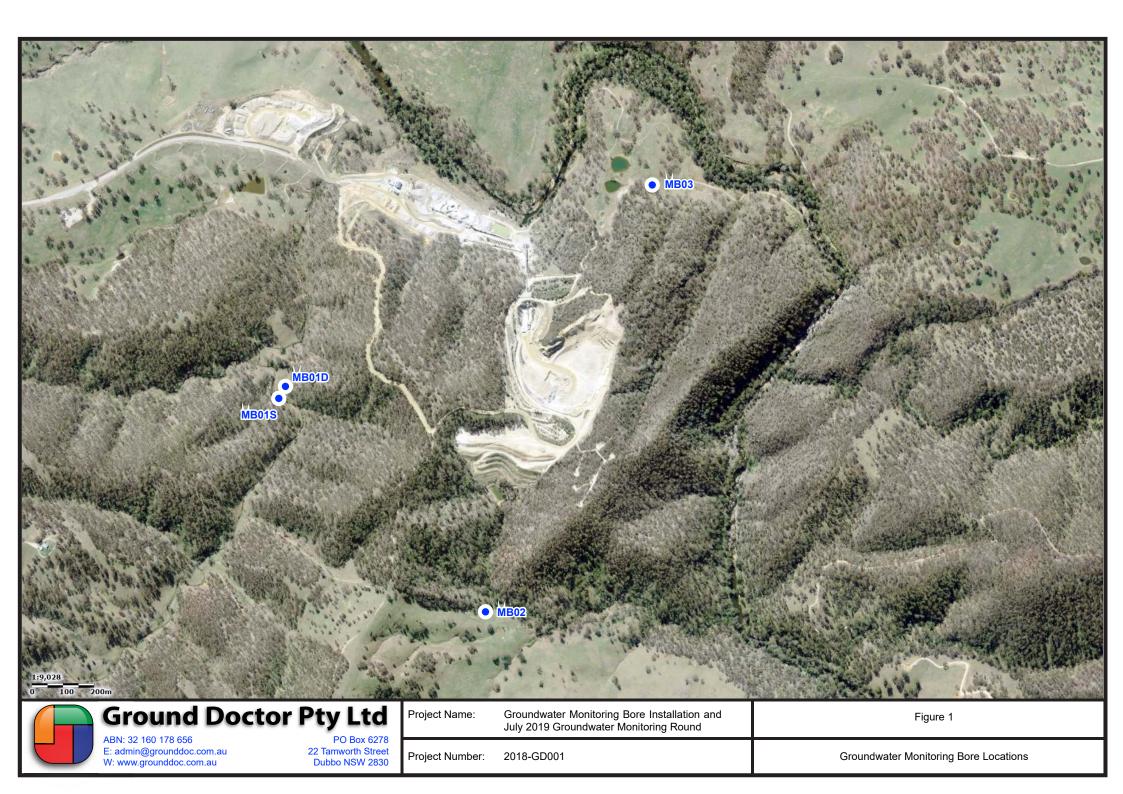
Attachment A – Figure

Attachment B - Groundwater Sampling Forms

Attachment C - Water Quality Meter Calibration Record

Attachment D - Groundwater Level Charts

Attachment E - Laboratory Certificate of Analysis


Attachment F - Analytical Results Summary Table

8 References

• Groundwork Plus (2017), "Austen Quarry Water Management Plan", Report Number 1517_610_002_RPTO_Water Management Plan_V8, 10 October 2017

Attachment A

Figure

Attachment B

Groundwater Sampling Forms

Austen Quarry Groundwater Monitoring Form

Monitoring Bore ID:	MB01S
Date:	2 and 3 July 2019

Depth to Water:	4.36m
Depth to Bottom:	7.42m
Saturated Well Depth:	3.1m
Well Volume:	6L (Saturated Well Depth x 2L)

Purge Volume (L)	Temp (oC)	DO (ppm)	EC (uS/cm)	рН	ORP (mV)
10L	15.4	2.99	467	7.94	95
20L	15.9	3.74	470	7.64	99
30L	15.9	4.95	280	7.478	98
40L	15.8	5.57	290	7.41	91
50L	15.7	6.57	467	7.39	89

Description of Works / Observations:		
Good water inflow.		
Groundwater was turbid (grey-brown) during purging.		
Groundwater was allowed to settle before sampling to minimise turbidy in samples.		

Monitoring Bore ID:	MB01D
Date:	2 and 3 July 2019

Depth to Water:	4.55m
Depth to Bottom:	29.3m
Saturated Well Depth:	24.8m
Well Volume:	50L

Purge Volume (L)	Temp (oC)	DO (ppm)	EC (uS/cm)	рН	ORP (mV)
52L	15.4	5.68	666	7.36	89

Description of Works / Observations:		
Well bailed dry after 52L removed (well volume)		
Water was turbid grey-brown during purging, becoming siltier with increased drawdown.		
Well allowed to recover overnight.		
Water sampled was clear and colourless (low turbidy).		

Monitoring Bore ID:	MB02
Date:	2 and 3 July 2019

Depth to Water:	17.82m
Depth to Bottom:	29.10m
Saturated Well Depth:	11.3m
Well Volume:	23L

Purge Volume (L)	Temp (oC)	DO (ppm)	EC (uS/cm)	рН	ORP (mV)
32L	13.8	4.1	1083	7.39	139

Description of Works / Observations:
Well bailed dry after 32L removed.
Water was turbid grey during purging, becoming siltier with increased drawdown.
Well allowed to recover overnight.
Water sampled was clear and colourless (low turbidy).

Monitoring Bore ID:	MB03	MB03				
Date:	2 and 3 July 201	2 and 3 July 2019				
Depth to Water:	Well Dry					
Depth to Bottom:	25.31m					
Saturated Well Depth:	NA					
Well Volume:	NA					
Field Parameters:						
Purge Volume (L)	Temp (oC)	DO (ppm)	EC (uS/cm)	рН	ORP (mV)	
NA						
Description of Works / C	bservations:					
Well was dry.						

Monitoring Bore ID:	Pit Sump
Date:	03-Jul-19
Depth to Water:	NA
Depth to Bottom:	NA
Saturated Well Depth:	NA
Well Volume:	NA

Purge Volume (L)	Temp (oC)	DO (ppm)	EC (uS/cm)	рН	ORP (mV)
NA	7.9	9.5	536	8.33	129

Description of Works / Observations:	
Water in pit sump was clear and colourless.	
No hydrocarbon sheen visible on surface of pit water.	
No unnatural odour noted in sampled water.	
<u> </u>	

Monitoring Bore ID:	Yorkeys Creek				
Date:	03-Jul-19				
	•				
Depth to Water:	NA				
Depth to Bottom:	NA				
Saturated Well Depth:	NA				
Well Volume:	NA				
Wen volune.	1373				
tren volume.	TW.				
Field Parameters:					
	Temp (oC)	DO (ppm)	EC (uS/cm)	рН	ORP (mV)
Field Parameters:	1	DO (ppm) 9.64	EC (uS/cm)	pH 8.64	ORP (mV) 57
Field Parameters: Purge Volume (L)	Temp (oC)			-	
Field Parameters: Purge Volume (L)	Temp (oC)			-	
Field Parameters: Purge Volume (L)	Temp (oC)			-	

Description of Works / Observations:		
Field parametrs measured in Yorkeys Creek adjacent to MB01S		

Attachment C

Water Quality Meter Calibration Form

Multi Parameter Water Meter

Instrument YSI Quatro Pro Plus

Serial No. 18J104332

Item	Test	Pass	Comments
Battery	Charge Condition	✓	
	Fuses	✓	
	Capacity	✓	
Switch/keypad	Operation	✓	
Display	Intensity	✓	
	Operation (segments)	✓	
Grill Filter	Condition	✓	
	Seal	✓	
PCB	Condition	✓	
Connectors	Condition	✓	
Sensor	1. pH	✓	
	2. mV	✓	
	3. EC	✓	
	4. D.O	✓	
	5. Temp	✓	
Alarms	Beeper		
	Settings		
Software	Version		
Data logger	Operation		
Download	Operation		
Other tests:			

Certificate of Calibration

This is to certify that the above instrument has been calibrated to the following specifications:

Sensor	Serial no	Standard Solutions	Certified	Solution Bottle	Instrument Reading
				Number	
1. pH 10.00		pH 10.00		324189	pH 9.88
2. pH 7.00		pH 7.00		330737	pH 6.99
3. pH 4.00		pH 4.00		324985	pH 3.97
4. mV		231.8mV		325420/325421	233.0mV
5. EC		2.76mS		322349	2.75mS
6. D.O		0.00ppm		10175	0.00ppm
7. Temp		20.2°C		MultiTherm	20°C

Calibrated by: Kylie Boardman

Calibration date: 28/06/2019

Next calibration due: 28/07/2019

Attachment D

Groundwater Level Chart

Attachment E

Laboratory Certificate of Analysis

Envirolab Services Pty Ltd
ABN 37 112 535 645
12 Ashley St Chatswood NSW 2067
ph 02 9910 6200 fax 02 9910 6201
customerservice@envirolab.com.au
www.envirolab.com.au

SAMPLE RECEIPT ADVICE

Client Details	
Client	Ground Doctor Pty Ltd
Attention	James Morrow

Sample Login Details	
Your reference	Hytec Austen Quarry Baseline Groundwater Monitorin
Envirolab Reference	220963
Date Sample Received	04/07/2019
Date Instructions Received	04/07/2019
Date Results Expected to be Reported	04/07/2019

Sample Condition	
Samples received in appropriate condition for analysis	Yes
No. of Samples Provided	5 WATER
Turnaround Time Requested	Same day
Temperature on Receipt (°C)	6.3
Cooling Method	Ice
Sampling Date Provided	YES

Comments	
Nil	

Please direct any queries to:

Aileen Hie	Jacinta Hurst
Phone: 02 9910 6200	Phone: 02 9910 6200
Fax: 02 9910 6201	Fax: 02 9910 6201
Email: ahie@envirolab.com.au	Email: jhurst@envirolab.com.au

Analysis Underway, details on the following page:

Envirolab Services Pty Ltd

ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

Sample ID	vTRH(C6-C10)/BTEXN in Water	svTRH (C10-C40) in Water	PAHsin Water	Calcium - Dissolved	Potassium - Dissolved	Sodium - Dissolved	Magnesium - Dissolved	Hydroxide Alkalinity (OH-) as CaCO3	Bicarbonate Alkalinity as CaCO3	Carbonate Alkalinity as CaCO3	Total Alkalinity as CaCO3	Sulphate, SO4	Chloride, Cl	Ionic Balance	All metals in water-dissolved	Metals in Water - Dissolved	Total Dissolved Solids(grav)	Ammonia as N in water	Nitrate as N in water	Nitrite as N in water
MB01S				✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓
MB01D				✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓
MB02				✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓
PIT	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓
DUPA				✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓

The 'v' indicates the testing you have requested. THIS IS NOT A REPORT OF THE RESULTS.

Additional Info

Sample storage - Waters are routinely disposed of approximately 1 month and soils approximately 2 months from receipt.

Requests for longer term sample storage must be received in writing.

Please contact the laboratory immediately if observed settled sediment present in water samples is to be included in the extraction and/or analysis (exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, Total Recoverable metals and PFAS analysis where solids are included by default.

TAT for Micro is dependent on incubation. This varies from 3 to 6 days.

Envirolab Services Pty Ltd

ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

CERTIFICATE OF ANALYSIS 220963

Client Details	
Client	Ground Doctor Pty Ltd
Attention	James Morrow
Address	PO Box 6278, Dubbo, NSW, 2830

Sample Details	
Your Reference	Hytec Austen Quarry Baseline Groundwater Monitorin
Number of Samples	5 WATER
Date samples received	04/07/2019
Date completed instructions received	04/07/2019

Analysis Details

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Please refer to the last page of this report for any comments relating to the results.

Report Details						
Date results requested by	05/07/2019					
Date of Issue	05/07/2019					
NATA Accreditation Number 2901. This document shall not be reproduced except in full.						
Accredited for compliance with ISO	/IEC 17025 - Testing. Tests not covered by NATA are denoted with *					

Results Approved By

Jaimie Loa-Kum-Cheung, Metals Supervisor Loren Bardwell, Senior Chemist Priya Samarawickrama, Senior Chemist Steven Luong, Organics Supervisor **Authorised By**

Nancy Zhang, Laboratory Manager

vTRH(C6-C10)/BTEXN in Water		
Our Reference		220963-4
Your Reference	UNITS	PIT
Date Sampled		03/07/2019
Type of sample		WATER
Date extracted	-	04/07/2019
Date analysed	-	04/07/2019
TRH C ₆ - C ₉	μg/L	<10
TRH C ₆ - C ₁₀	μg/L	<10
TRH C ₆ - C ₁₀ less BTEX (F1)	μg/L	<10
Benzene	μg/L	<1
Toluene	μg/L	<1
Ethylbenzene	μg/L	<1
m+p-xylene	μg/L	<2
o-xylene	μg/L	<1
Naphthalene	μg/L	<1
Surrogate Dibromofluoromethane	%	123
Surrogate toluene-d8	%	96
Surrogate 4-BFB	%	88

svTRH (C10-C40) in Water		
Our Reference		220963-4
Your Reference	UNITS	PIT
Date Sampled		03/07/2019
Type of sample		WATER
Date extracted	-	04/07/2019
Date analysed	-	04/07/2019
TRH C ₁₀ - C ₁₄	μg/L	<50
TRH C ₁₅ - C ₂₈	μg/L	<100
TRH C ₂₉ - C ₃₆	μg/L	<100
TRH >C ₁₀ - C ₁₆	μg/L	<50
TRH >C ₁₀ - C ₁₆ less Naphthalene (F2)	μg/L	<50
TRH >C ₁₆ - C ₃₄	μg/L	<100
TRH >C ₃₄ - C ₄₀	μg/L	<100
Surrogate o-Terphenyl	%	88

PAHs in Water		
Our Reference		220963-4
Your Reference	UNITS	PIT
Date Sampled		03/07/2019
Type of sample		WATER
Date extracted	-	04/07/2019
Date analysed	-	04/07/2019
Naphthalene	μg/L	<1
Acenaphthylene	μg/L	<1
Acenaphthene	μg/L	<1
Fluorene	μg/L	<1
Phenanthrene	μg/L	<1
Anthracene	μg/L	<1
Fluoranthene	μg/L	<1
Pyrene	μg/L	<1
Benzo(a)anthracene	μg/L	<1
Chrysene	μg/L	<1
Benzo(b,j+k)fluoranthene	μg/L	<2
Benzo(a)pyrene	μg/L	<1
Indeno(1,2,3-c,d)pyrene	μg/L	<1
Dibenzo(a,h)anthracene	μg/L	<1
Benzo(g,h,i)perylene	μg/L	<1
Benzo(a)pyrene TEQ	μg/L	<5
Total +ve PAH's	μg/L	NIL (+)VE
Surrogate p-Terphenyl-d14	%	111

Ion Balance						
Our Reference		220963-1	220963-2	220963-3	220963-4	220963-5
Your Reference	UNITS	MB01S	MB01D	MB02	PIT	DUPA
Date Sampled		03/07/2019	03/07/2019	03/07/2019	03/07/2019	03/07/2019
Type of sample		WATER	WATER	WATER	WATER	WATER
Date prepared	-	04/07/2019	04/07/2019	04/07/2019	04/07/2019	04/07/2019
Date analysed	-	04/07/2019	04/07/2019	04/07/2019	04/07/2019	04/07/2019
Calcium - Dissolved	mg/L	75	130	81	62	74
Potassium - Dissolved	mg/L	1.7	1.2	2.3	4.6	1.7
Sodium - Dissolved	mg/L	19	41	190	24	20
Magnesium - Dissolved	mg/L	14	12	35	51	14
Hydroxide Alkalinity (OH⁻) as CaCO₃	mg/L	<5	<5	<5	<5	<5
Bicarbonate Alkalinity as CaCO ₃	mg/L	230	290	520	170	220
Carbonate Alkalinity as CaCO₃	mg/L	<5	<5	<5	<5	<5
Total Alkalinity as CaCO₃	mg/L	230	290	520	170	220
Sulphate, SO4	mg/L	18	95	130	210	20
Chloride, Cl	mg/L	40	32	82	18	41
Ionic Balance	%	-3.0	3.0	0	1.0	-2.0

All metals in water-dissolved						
Our Reference		220963-1	220963-2	220963-3	220963-4	220963-5
Your Reference	UNITS	MB01S	MB01D	MB02	PIT	DUPA
Date Sampled		03/07/2019	03/07/2019	03/07/2019	03/07/2019	03/07/2019
Type of sample		WATER	WATER	WATER	WATER	WATER
Date prepared	-	04/07/2019	04/07/2019	04/07/2019	04/07/2019	04/07/2019
Date analysed	-	04/07/2019	04/07/2019	04/07/2019	04/07/2019	04/07/2019
Aluminium-Dissolved	μg/L	<10	<10	<10	<10	<10
Arsenic-Dissolved	μg/L	1	5	3	<1	1
Boron-Dissolved	μg/L	20	270	230	<20	30
Barium-Dissolved	μg/L	8	52	88	29	9
Beryllium-Dissolved	μg/L	<0.5	<0.5	<0.5	<0.5	<0.5
Cadmium-Dissolved	μg/L	<0.1	<0.1	<0.1	<0.1	<0.1
Cobalt-Dissolved	μg/L	<1	1	<1	<1	<1
Chromium-Dissolved	μg/L	<1	<1	<1	<1	<1
Copper-Dissolved	μg/L	<1	<1	<1	<1	<1
Iron-Dissolved	μg/L	<10	<10	<10	<10	<10
Mercury-Dissolved	μg/L	<0.05	<0.05	<0.05	<0.05	<0.05
Manganese-Dissolved	μg/L	93	150	62	<5	100
Molybdenum-Dissolved	μg/L	<1	4	2	9	<1
Nickel-Dissolved	μg/L	<1	4	<1	<1	<1
Lead-Dissolved	μg/L	<1	<1	2	<1	<1
Selenium-Dissolved	μg/L	<1	<1	<1	<1	<1
Silver-Dissolved	μg/L	<1	<1	<1	<1	<1
Strontium-Dissolved	μg/L	200	820	3,200	260	210
Titanium-Dissolved	μg/L	<1	<1	<1	<1	<1
Vanadium-Dissolved	μg/L	<1	20	2	<1	<1
Zinc-Dissolved	μg/L	2	5	7	6	3

Metals in Water - Dissolved						
Our Reference		220963-1	220963-2	220963-3	220963-4	220963-5
Your Reference	UNITS	MB01S	MB01D	MB02	PIT	DUPA
Date Sampled		03/07/2019	03/07/2019	03/07/2019	03/07/2019	03/07/2019
Type of sample		WATER	WATER	WATER	WATER	WATER
Date digested	-	04/07/2019	04/07/2019	04/07/2019	04/07/2019	04/07/2019
Date analysed	-	04/07/2019	04/07/2019	04/07/2019	04/07/2019	04/07/2019
Silicon*- Dissolved	mg/L	9.5	29	11	3.8	9.5

Miscellaneous Inorganics						
Our Reference		220963-1	220963-2	220963-3	220963-4	220963-5
Your Reference	UNITS	MB01S	MB01D	MB02	PIT	DUPA
Date Sampled		03/07/2019	03/07/2019	03/07/2019	03/07/2019	03/07/2019
Type of sample		WATER	WATER	WATER	WATER	WATER
Date prepared	-	04/07/2019	04/07/2019	04/07/2019	04/07/2019	04/07/2019
Date analysed	-	04/07/2019	04/07/2019	04/07/2019	04/07/2019	04/07/2019
Total Dissolved Solids (grav)	mg/L	350	510	790	550	340
Ammonia as N in water	mg/L	<0.005	0.005	0.062	<0.005	<0.005
Nitrate as N in water	mg/L	<0.005	<0.005	0.008	0.30	<0.005
Nitrite as N in water	mg/L	<0.005	<0.005	<0.005	<0.005	<0.005

Method ID	Methodology Summary
Inorg-006	Alkalinity - determined titrimetrically in accordance with APHA latest edition, 2320-B.
Inorg-018	Total Dissolved Solids - determined gravimetrically. The solids are dried at 180+/-10°C.
Inorg-040	The concentrations of the major ions (mg/L) are converted to milliequivalents and summed. The ionic balance should be within +/- 10% ie total anions = total cations +/-10%.
Inorg-055	Nitrate - determined colourimetrically. Waters samples are filtered on receipt prior to analysis. Soils are analysed following a water extraction.
Inorg-055	Nitrite - determined colourimetrically based on APHA latest edition NO2- B. Waters samples are filtered on receipt prior to analysis. Soils are analysed following a water extraction.
Inorg-057	Ammonia - determined colourimetrically, based on APHA latest edition 4500-NH3 F. Waters samples are filtered on receipt prior to analysis. Soils are analysed following a KCl extraction.
Inorg-081	Anions - a range of Anions are determined by Ion Chromatography, in accordance with APHA latest edition, 4110-B. Waters samples are filtered on receipt prior to analysis. Alternatively determined by colourimetry/turbidity using Discrete Analyser.
Metals-020	Determination of various metals by ICP-AES.
Metals-021	Determination of Mercury by Cold Vapour AAS.
Metals-022	Determination of various metals by ICP-MS.
Org-003	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID. F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis.
Org-012	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS. Benzo(a)pyrene TEQ as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater - 2013.
Org-013	Water samples are analysed directly by purge and trap GC-MS.
Org-016	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater.

QUALITY CONT	ROL: vTRH(C6-C10)/E	BTEXN in Water			Dι	ıplicate		Spike Rec	overy %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	[NT]
Date extracted	-			04/07/2019	[NT]		[NT]	[NT]	04/07/2019	
Date analysed	-			04/07/2019	[NT]		[NT]	[NT]	04/07/2019	
TRH C ₆ - C ₉	μg/L	10	Org-016	<10	[NT]		[NT]	[NT]	93	
TRH C ₆ - C ₁₀	μg/L	10	Org-016	<10	[NT]		[NT]	[NT]	93	
Benzene	μg/L	1	Org-016	<1	[NT]		[NT]	[NT]	120	
Toluene	μg/L	1	Org-016	<1	[NT]		[NT]	[NT]	112	
Ethylbenzene	μg/L	1	Org-016	<1	[NT]		[NT]	[NT]	102	
m+p-xylene	μg/L	2	Org-016	<2	[NT]		[NT]	[NT]	106	
o-xylene	μg/L	1	Org-016	<1	[NT]		[NT]	[NT]	109	
Naphthalene	μg/L	1	Org-013	<1	[NT]		[NT]	[NT]	92	
Surrogate Dibromofluoromethane	%		Org-016	127	[NT]		[NT]	[NT]	117	
Surrogate toluene-d8	%		Org-016	97	[NT]		[NT]	[NT]	96	
Surrogate 4-BFB	%		Org-016	89	[NT]		[NT]	[NT]	103	

QUALITY CON	Du	plicate		Spike Re	covery %					
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	[NT]
Date extracted	-			04/07/2019	[NT]		[NT]	[NT]	04/07/2019	
Date analysed	-			04/07/2019	[NT]		[NT]	[NT]	04/07/2019	
TRH C ₁₀ - C ₁₄	μg/L	50	Org-003	<50	[NT]		[NT]	[NT]	81	
TRH C ₁₅ - C ₂₈	μg/L	100	Org-003	<100	[NT]		[NT]	[NT]	71	
TRH C ₂₉ - C ₃₆	μg/L	100	Org-003	<100	[NT]		[NT]	[NT]	76	
TRH >C ₁₀ - C ₁₆	μg/L	50	Org-003	<50	[NT]		[NT]	[NT]	[NT]	
TRH >C ₁₆ - C ₃₄	μg/L	100	Org-003	<100	[NT]		[NT]	[NT]	71	
TRH >C ₃₄ - C ₄₀	μg/L	100	Org-003	<100	[NT]		[NT]	[NT]	76	
Surrogate o-Terphenyl	%		Org-003	122	[NT]		[NT]	[NT]	95	

QUAL	ITY CONTRO	L: PAHs ir	Water			Du	plicate	Spike Recovery %			
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	[NT]	
Date extracted	-			04/07/2019	[NT]		[NT]	[NT]	04/07/2019		
Date analysed	-			04/07/2019	[NT]		[NT]	[NT]	04/07/2019		
Naphthalene	μg/L	1	Org-012	<1	[NT]		[NT]	[NT]	108		
Acenaphthylene	μg/L	1	Org-012	<1	[NT]		[NT]	[NT]	[NT]		
Acenaphthene	μg/L	1	Org-012	<1	[NT]		[NT]	[NT]	[NT]		
Fluorene	μg/L	1	Org-012	<1	[NT]		[NT]	[NT]	92		
Phenanthrene	μg/L	1	Org-012	<1	[NT]		[NT]	[NT]	86		
Anthracene	μg/L	1	Org-012	<1	[NT]		[NT]	[NT]	[NT]		
Fluoranthene	μg/L	1	Org-012	<1	[NT]		[NT]	[NT]	84		
Pyrene	μg/L	1	Org-012	<1	[NT]		[NT]	[NT]	86		
Benzo(a)anthracene	μg/L	1	Org-012	<1	[NT]		[NT]	[NT]	[NT]		
Chrysene	μg/L	1	Org-012	<1	[NT]		[NT]	[NT]	86		
Benzo(b,j+k)fluoranthene	μg/L	2	Org-012	<2	[NT]		[NT]	[NT]	[NT]		
Benzo(a)pyrene	μg/L	1	Org-012	<1	[NT]		[NT]	[NT]	84		
Indeno(1,2,3-c,d)pyrene	μg/L	1	Org-012	<1	[NT]		[NT]	[NT]	[NT]		
Dibenzo(a,h)anthracene	μg/L	1	Org-012	<1	[NT]		[NT]	[NT]	[NT]		
Benzo(g,h,i)perylene	μg/L	1	Org-012	<1	[NT]		[NT]	[NT]	[NT]		
Surrogate p-Terphenyl-d14	%		Org-012	107	[NT]		[NT]	[NT]	105		

QUALI	TY CONTRO	lance			Du	plicate		Spike Recovery %		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	220963-2
Date prepared	-			04/07/2019	1	04/07/2019	04/07/2019		04/07/2019	04/07/2019
Date analysed	-			04/07/2019	1	04/07/2019	04/07/2019		04/07/2019	04/07/2019
Calcium - Dissolved	mg/L	0.5	Metals-020	<0.5	1	75	75	0	98	#
Potassium - Dissolved	mg/L	0.5	Metals-020	<0.5	1	1.7	1.7	0	105	105
Sodium - Dissolved	mg/L	0.5	Metals-020	<0.5	1	19	20	5	98	#
Magnesium - Dissolved	mg/L	0.5	Metals-020	<0.5	1	14	14	0	101	93
Hydroxide Alkalinity (OH⁻) as CaCO₃	mg/L	5	Inorg-006	<5	1	<5	[NT]		[NT]	[NT]
Bicarbonate Alkalinity as CaCO ₃	mg/L	5	Inorg-006	<5	1	230	[NT]		[NT]	[NT]
Carbonate Alkalinity as CaCO ₃	mg/L	5	Inorg-006	<5	1	<5	[NT]		[NT]	[NT]
Total Alkalinity as CaCO ₃	mg/L	5	Inorg-006	<5	1	230	[NT]		103	[NT]
Sulphate, SO4	mg/L	1	Inorg-081	<1	1	18	[NT]		100	[NT]
Chloride, Cl	mg/L	1	Inorg-081	<1	1	40	[NT]		89	[NT]
Ionic Balance	%		Inorg-040	[NT]	1	-3.0	[NT]		[NT]	[NT]

QUALITY CON	ITROL: All m	etals in w	ater-dissolved			Du	plicate	Spike Recovery %			
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	220963-2	
Date prepared	-			04/07/2019	1	04/07/2019	04/07/2019		04/07/2019	04/07/2019	
Date analysed	-			04/07/2019	1	04/07/2019	04/07/2019		04/07/2019	04/07/2019	
Aluminium-Dissolved	μg/L	10	Metals-022	<10	1	<10	<10	0	96	100	
Arsenic-Dissolved	μg/L	1	Metals-022	<1	1	1	1	0	96	88	
Boron-Dissolved	μg/L	20	Metals-022	<20	1	20	20	0	100	#	
Barium-Dissolved	μg/L	1	Metals-022	<1	1	8	9	12	96	98	
Beryllium-Dissolved	μg/L	0.5	Metals-022	<0.5	1	<0.5	<0.5	0	98	101	
Cadmium-Dissolved	μg/L	0.1	Metals-022	<0.1	1	<0.1	<0.1	0	97	87	
Cobalt-Dissolved	μg/L	1	Metals-022	<1	1	<1	<1	0	99	85	
Chromium-Dissolved	μg/L	1	Metals-022	<1	1	<1	<1	0	93	82	
Copper-Dissolved	μg/L	1	Metals-022	<1	1	<1	<1	0	99	88	
Iron-Dissolved	μg/L	10	Metals-022	<10	1	<10	<10	0	104	93	
Mercury-Dissolved	μg/L	0.05	Metals-021	<0.05	1	<0.05	<0.05	0	96	93	
Manganese-Dissolved	μg/L	5	Metals-022	<5	1	93	88	6	93	#	
Molybdenum-Dissolved	μg/L	1	Metals-022	<1	1	<1	<1	0	89	88	
Nickel-Dissolved	μg/L	1	Metals-022	<1	1	<1	<1	0	95	84	
Lead-Dissolved	μg/L	1	Metals-022	<1	1	<1	<1	0	99	101	
Selenium-Dissolved	μg/L	1	Metals-022	<1	1	<1	<1	0	96	98	
Silver-Dissolved	μg/L	1	Metals-022	<1	1	<1	<1	0	101	88	
Strontium-Dissolved	μg/L	1	Metals-022	<1	1	200	190	5	90	#	
Titanium-Dissolved	μg/L	1	Metals-022	<1	1	<1	<1	0	99	90	
Vanadium-Dissolved	μg/L	1	Metals-022	<1	1	<1	<1	0	92	85	
Zinc-Dissolved	μg/L	1	Metals-022	<1	1	2	2	0	96	86	

Envirolab Reference: 220963

Revision No: R00

QUALITY CON	Duplicate				Spike Recovery %					
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	220963-2
Date digested	-			04/07/2019	1	04/07/2019	04/07/2019		04/07/2019	04/07/2019
Date analysed	-			04/07/2019	1	04/07/2019	04/07/2019		04/07/2019	04/07/2019
Silicon*- Dissolved	mg/L	0.2	Metals-020	<0.2	1	9.5	9.5	0	102	72

Envirolab Reference: 220963

Revision No: R00

QUALITY CON	NTROL: Misc	cellaneou		Du		Spike Recovery %				
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	[NT]
Date prepared	-			04/07/2019	[NT]		[NT]	[NT]	04/07/2019	
Date analysed	-			04/07/2019	[NT]		[NT]	[NT]	04/07/2019	
Total Dissolved Solids (grav)	mg/L	5	Inorg-018	<5	[NT]		[NT]	[NT]	106	
Ammonia as N in water	mg/L	0.005	Inorg-057	<0.005	[NT]		[NT]	[NT]	97	
Nitrate as N in water	mg/L	0.005	Inorg-055	<0.005	[NT]		[NT]	[NT]	109	
Nitrite as N in water	mg/L	0.005	Inorg-055	<0.005	[NT]	[NT]	[NT]	[NT]	100	[NT]

Result Definiti	ons
NT	Not tested
NA	Test not required
INS	Insufficient sample for this test
PQL	Practical Quantitation Limit
<	Less than
>	Greater than
RPD	Relative Percent Difference
LCS	Laboratory Control Sample
NS	Not specified
NEPM	National Environmental Protection Measure
NR	Not Reported

Quality Control	ol Definitions
Blank	This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.
Duplicate	This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.
Matrix Spike	A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.
LCS (Laboratory Control Sample)	This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.
Surrogate Spike	Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.
Australian Drinking	Water Guidelines recommend that Thermotolerant Coliform, Faecal Enterococci, & F. Coli levels are less than

Australian Drinking Water Guidelines recommend that Thermotolerant Coliform, Faecal Enterococci, & E.Coli levels are less than 1cfu/100mL. The recommended maximums are taken from "Australian Drinking Water Guidelines", published by NHMRC & ARMC 2011.

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: >10xPQL - RPD acceptance criteria will vary depending on the analytes and the analytical techniques but is typically in the range 20%-50% – see ELN-P05 QA/QC tables for details; <10xPQL - RPD are higher as the results approach PQL and the estimated measurement uncertainty will statistically increase.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals; 60-140% for organics (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Measurement Uncertainty estimates are available for most tests upon request.

Analysis of aqueous samples typically involves the extraction/digestion and/or analysis of the liquid phase only (i.e. NOT any settled sediment phase but inclusive of suspended particles if present), unless stipulated on the Envirolab COC and/or by correspondence. Notable exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, total recoverable metals and PFAS where solids are included by default.

Envirolab Reference: 220963 Page | 18 of 19 Revision No: R00

Report Comments

METALS Ion Balance - # Percent recovery is not possible to report due to the high concentration of the element/s in the sample/s. However an acceptable recovery was obtained for the LCS.

All metals in water-dissolved - # Percent recovery is not possible to report due to the high concentration of the element/s in the sample/s. However an acceptable recovery was obtained for the LCS.

Envirolab Reference: 220963 Page | 19 of 19

Revision No: R00

	· <u>- ·</u>		СНА	IN OF C	US	TC	DY	7 – (Clie	ent											
Client: Group	d Doctor Pty Ltd	Client Project Name / Number / Site etc (ie report title):																			
Contact perso	Hytec Austen Quarry Baseline Groundwater Monitoring																				
Project Mgr: James Morrow							PO No.:											Phone:			
Sampler: Jai					Envirol	ab Qu	ote No.	.:							E-ma	il:					
	ten Quarry, 391 Jenolan C	aves Road, Hartley, N	sw	<u> </u>				-	Stand	ard=fA-T	<u></u>	مر	9~		Conta	ict:					
		-		standar		,															
Phone:	↓			nce if urg	gent turni	around is re	quired - s	surcharg	e applie	<u>-</u>											
Fax:	-				Lab co	mmer	its:														
Email:				<u> </u>	<u> </u>		_			_	_										
		ample information			L.,						Tests	Requir	ed	1	_						
Envirolab Sample ID	Client Sample ID or information	Depth	Date sampled	Type of sample	Hy-tec Suite (see table below)	ткн, втех, ранѕ							L————								
1	MB01S		03-Jul-19	Water	x												 _				
2	MB01D	<u> </u>	03-Jul-19	Water	х		<u> </u>					-Envir	lab Se	vices	<u></u>	igsquare	 				
3	MB02	<u> </u>	03-Jul-19	Water	х					ENVÎROI	ÀÐ	hatewa	12 Ash	lley St V 2067		<u> </u>	\vdash				
4	Pit		03-Jul-19	Water	х	х				~=		Ph: (od NSV (2) 991	6200			igwdap				
5	DUPA	·	03-Jul-19	Water	х					Job No	<u> 2</u> 2	<u> </u>	16°	-	ļ		 				
										Date Ro Time R Repeive	aceived ad by: 1	33	55_	/19							
					ļ _		<u> </u>			Temp:			13	<u> </u>	دإ	$\vdash \downarrow$	 	—∤			
					↓		-			Ceeling	A (III) A		aul/on		==			\longrightarrow			
				<u> </u>									l		-						
Relinquished by (company): James Morrow							Print Name: S- Bo Hon								Lab use only: Samples Received: Cool of Ambic						
IFTINIL NAME:											2. /				1			\	_		
Date & Time		3/7/19 1 <u>400</u>					:04	_	<u>-/\@</u>		8:5	> >			1		Receiv				
Signature:		JRM			Signat	ture:	S	حوکے	^	M/hite	- / ah	COUNT	/ Rlue	- Clier			by: Ha k - Ret	_			

HYTEC Groundwater Suite

Analyte Group	Analyte								
Dissolved Solids	Total Dissolved Solids								
	Magnesium								
Major Cations	Calcium								
major dances	Sodium								
	Potassium								
	Sulphate								
	Chloride								
Major Anions	Hydroxide as CaCO₃								
	Carbonate as CaCO ₃								
	Bicarbonate as CaCO ₃								
	Aluminium								
`	Arsenic								
	Boron								
ŀ	Barium								
1	Beryllium								
ł	Cadmium								
1	Chromium								
	Cobait								
	Copper								
	Iron								
	Lead								
Heavy Metals (Dissolved)	Manganese								
	Mercury								
	Molybdenum								
1	Nickel								
1	Selenium								
	Silicon								
1	Silver								
	Strontium								
	Titanium								
	Vanadium								
	Zinc								
	Ammonia								
Nutrients	Nitrate								
Nutricino	Nitrite								

220963

Attachment F

Analytical Results Summary Table

Table F1 Baseline Analytical Data Summary - January 2018 to July 2019

		ANZECC	Aust. Drinking Water	10/01/2018	22/06/2018	03/01/19	03/07/19	10/01/2018	22/06/2018	03/01/19	03/07/19	10/01/2018	22/06/2018	03/01/19	03/07/19	10/01/2018	22/06/2018	03/01/19	03/07/19	Units
		DGV 2018 (Fresh)	2011	MB01S	MB01S	MB01S	MB01S	MB01D	MB01D	MB01D	MB01D	MB02	MB02	MB02	MB02	PIT	PIT	PIT	PIT	
	Calcium	-	-	66	74	68	75	144	150	140	130	52	71	73	81	71	49	64	62	mg/L
Major Cations (mg/L)	Magnesium	-	-	14	13	13	14	16	15	14	12	24	31	33	35	45	26	44	51	mg/L
	Sodium	-	-	23	22	18	19	95	59	48	41	200	190	170	190	26	25	20	24	mg/L
	Potassium	-	-	1	1	1.5	1.7	3	1	1.4	1.2	2	2	2.2	2.3	4	3	4.7	4.6	mg/L
	Sulphate	-	-	22	23	25	18	259	248	200	95	120	127	130	130	183	98	220	210	mg/L
Major Anions (mg/L)	Chloride	-	-	43	44	51	40	58	23	26	32	68	78	89	82	9	10	13	18	mg/L
	Hydroxide as CaCO3	-	-	<1	<1	<5	<5	<1	<1	<5	<5	<1	<1	<5	<5	<1	<1	<5	<5	mg/L
	Carbonate as CaCO3	-	-	<1	<1	<5	<5	<1	<1	<5	<5	<1	<1	<5	<5	<1	<1	<5	<5	mg/L
	Bicarbonate as CaCO3	-	-	216	232	230	230	307	335	350	290	476	520	530	520	181	201	170	170	mg/L
	Aluminium	0.055	-	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	0.01	<0.01	mg/L
	Arsenic	0.013	0.01	0.003	0.001	0.002	0.001	0.005	0.005	0.005	0.005	0.004	0.004	0.003	0.003	<0.001	<0.001	<0.001	< 0.001	mg/L
	Barium	-	2	0.015	0.013	0.011	0.008	0.08	0.055	0.061	0.052	0.065	0.085	0.097	0.088	0.032	0.029	0.071	0.029	mg/L
	Beryllium	-	0.06	<0.001	<0.001	< 0.0005	<0.0005	<0.001	< 0.001	<0.0005	<0.0005	<0.001	<0.001	<0.0005	<0.0005	<0.001	<0.001	<0.0005	< 0.0005	mg/L
	Boron	0.37	4	<0.05	<0.05	<0.02	<0.02	0.33	0.32	0.36	0.27	0.32	0.27	0.25	0.23	<0.05	<0.05	<0.02	<0.02	mg/L
	Cadmium	0.0002	0.002	<0.0001	< 0.0001	<0.0001	< 0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	0.0088	0.0019	0.0001	< 0.0001	mg/L
	Chromium	0.001	0.05	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	< 0.001	mg/L
	Cobalt	-	-	<0.001	<0.001	<0.001	<0.001	0.002	0.003	0.002	0.001	<0.001	<0.001	<0.001	<0.001	0.003	<0.001	<0.001	<0.001	mg/L
	Copper	0.0014	2	0.001	<0.001	<0.001	< 0.001	<0.001	<0.001	<0.001	< 0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	< 0.001	mg/L
	Iron	-	-	<0.05	< 0.05	<0.01	<0.01	< 0.05	< 0.05	0.014	<0.010	<0.05	< 0.05	<0.01	<0.01	< 0.05	< 0.05	<0.01	<0.01	mg/L
Heavy Metals (Dissolved) (mg/L)	Lead	0.0034	0.01	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	0.002	0.002	<0.001	<0.001	<0.001	<0.001	mg/L
	Manganese	1.9	0.5	0.123	0.153	0.085	0.093	0.353	0.53	0.5	0.15	0.038	0.046	0.085	0.062	2	0.188	<0.005	< 0.005	mg/L
	Mercury	0.6	0.001	<0.0001	<0.0001	<0.00005	< 0.00005	<0.0001	<0.0001	<0.00005	<0.00005	<0.0001	<0.0001	<0.00005	<0.00005	< 0.0001	<0.0001	<0.00005	< 0.00005	mg/L
	Molybdenum	-	0.05	0.002	<0.001	0.001	0.001	0.03	0.004	0.008	0.004	0.009	0.002	0.003	0.002	0.004	<0.001	0.011	0.009	mg/L
	Nickel	0.011	0.02	0.001	<0.001	<0.001	<0.001	0.018	0.003	0.006	0.004	0.003	0.002	<0.001	<0.001	0.008	0.001	<0.001	<0.001	mg/L
	Selenium	0.005	0.01	<0.01	<0.01	<0.001	< 0.001	<0.01	<0.01	<0.001	<0.001	<0.01	<0.01	<0.001	<0.001	<0.01	<0.01	<0.001	< 0.001	mg/L
	Silver	0.00005	0.01	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	mg/L
	Strontium	-	-	0.208	0.245	0.27	0.2	0.897	0.897	0.99	0.82	2.36	3.01	3.3	3.2	0.298	0.231	0.33	0.26	mg/L
	Titanium	-	-	<0.01	<0.01	<0.001	<0.001	<0.01	<0.01	<0.001	<0.001	<0.01	<0.01	<0.001	<0.001	<0.01	<0.01	<0.001	< 0.001	mg/L
	Vanadium	-	-	<0.01	<0.01	<0.001	<0.001	<0.01	<0.01	0.003	0.02	<0.01	<0.01	0.003	0.002	<0.01	<0.01	<0.001	< 0.001	mg/L
	Zinc	0.008	-	0.03	< 0.005	0.005	0.002	< 0.005	0.006	0.004	0.005	< 0.005	< 0.005	0.007	0.007	0.443	0.16	0.006	0.006	mg/L
Silicon (mg/L)	Silicon	-	-	9.15	10.1	8.9	9.5	24.4	31.6	37	29	9.6	11.3	11	11	15.2	19.4	5.1	3.8	mg/L
	Nitrate*	10 (as N)	50 (as NO3)	0.05	<0.01	0.01	<0.005	0.08	<0.01	0.01	<0.005	<0.01	<0.01	0.007	0.008	4.45	0.48	1.4	0.3	mg/L
Nutrients (mg/L)	Nitrite	None		<0.01	<0.01	<0.005	<0.005	<0.01	<0.01	<0.005	<0.005	<0.01	<0.01	<0.005	<0.005	0.01	<0.01	0.012	<0.005	mg/L
	Ammonia	0.9	-	0.03	0.05	<0.005	<0.005	0.03	0.02	<0.005	0.005	<0.01	0.08	0.048	0.062	0.4	0.05	<0.005	<0.005	mg/L
	TRH	-	-		-	-		-	-	-			-	-		<eql< td=""><td><eql< td=""><td><eql< td=""><td><eql< td=""><td>ug/L</td></eql<></td></eql<></td></eql<></td></eql<>	<eql< td=""><td><eql< td=""><td><eql< td=""><td>ug/L</td></eql<></td></eql<></td></eql<>	<eql< td=""><td><eql< td=""><td>ug/L</td></eql<></td></eql<>	<eql< td=""><td>ug/L</td></eql<>	ug/L
	Benzene	950	1		-	-				-				-		<1	<1	<1	<1	ug/L
	Toluene	-	800					-								<2	<2	<1	<1	ug/L
Hydrocarbons (ug/L)	Ethylbenzene	-	300					-	-							<2	<2	<1	<1	ug/L
	Xylene	200	600		-	-		-	-	-		-		-		<2	<2	<3	<3	ug/L
	Naphthalene	16	-					-	-							<5	<5	<1	<1	ug/L
	Benzo(a)pyrene	-	0.01	-	-	-		-	-	-		-	-	-		<0.5	<0.5	<1	<1	ug/L