

22 Tamworth Street PO Box 6278 DUBBO NSW 2830

Ph: 0407 875 302 Fax: (02) 8607 8122 admin@grounddoc.com.au

8 March 2018

Hy-tec Industries Pty Ltd Austen Quarry 391 Jenolan Caves Road Hartley NSW 2790 rod.welsh@adbri.com.au

Attention: Mr Rod Welsh

Dear Rod,

RE: GROUNDWATER MONITORING BORE INSTALLATION AND JANUARY 2018 GROUNDWATER MONITORING RESULTS, AUSTEN QUARRY, HARTLEY, NSW

Ground Doctor was engaged by Hy-tec Industries Pty Ltd (Hy-tec) to assist with the establishment of groundwater monitoring bores and to assist with the first round of groundwater monitoring at the Austen Quarry, 391 Jenolan Caves Road, Hartley, NSW (the site).

1 Background Information

The Stage 2 Expansion of the Austen Quarry was approved on 15 July 2015 (development application SSD-6084). An updated site specific Water Management Plan (WMP) (Groundwork Plus, 2017) was developed as required by the conditions of consent for development. The WMP included provisions for managing both surface water and groundwater impacts at the site. The revised WMP was approved in late 2017.

The WMP required the establishment of groundwater monitoring bores at three locations around the periphery of the open pit, establishment of water level data loggers in each bore and collection of four rounds of baseline groundwater quality over a two year period following establishment of the monitoring bores.

Hy-tec engaged Ground Doctor to assist with the establishment of the monitoring bore network and to assist with the first round of water quality monitoring. This report outlines the work undertaken and presents the results of the first groundwater monitoring round.

2 Objectives

The objectives of the work undertaken were to:

- Establish a groundwater monitoring bore network in compliance with the WMP;
- Establish water level data loggers in each newly installed monitoring bore;
- Complete the first round of groundwater monitoring in accordance with the WMP.

3 Monitoring Bore Locations

The monitoring bore locations are shown on *Figure 1* of *Attachment A*. Monitoring bore coordinates and details are summarised in *Table 1*.

The selected monitoring bore locations were within the approximate locations shown in *Figure 6* of the WMP (Groundwork Plus, 2017). The periphery of the open pit (or proposed extent of the open pit) is predominantly steep and inaccessible to conventional vehicles. The monitoring bore locations were determined primarily based on accessibility to drilling equipment. It was necessary to ensure that the borehole could be installed safely and that the monitoring bores could be safely accessed during future monitoring events.

4 Monitoring Bore Installation

Monitoring bore installation work was undertaken 18-19 December 2017.

Boreholes were drilled by Premier Drill and Blast using air rotary (top hammer) drilling methods. Boreholes were drilled with an 89mm diameter drill bit.

Drilling work was supervised by Ground Doctor's Environmental Engineer, Mr James Morrow. Drill cuttings were observed and logged in the field with particular attention paid to the presence of weak zones in rock and moisture content of drill cuttings. Boreholes were drilled to a maximum depth of 28.5m below ground level or a minimum of 670m AHD.

Where evidence of potential water bearing features was encountered the hole was left undisturbed for a period of approximately 15 minutes at the next rod change to assess whether the borehole was making water. In most boreholes, water was not made during drilling and the presence of water bearing strata was determined by small moisture changes in the drill cuttings.

Once the boreholes reached the maximum or targeted depth the drill rods were removed. Bore casing was arranged at the surface and the lowered into the borehole.

Boreholes were constructed of 50mm ID screw fit Class 18 uPVC screen (1mm aperture) and blank casing. In each borehole screened sections were placed adjacent to water bearing strata (or suspected water bearing strata) as well as at the base of each borehole.

The borehole annulus adjacent to each screen was gravel packed using 3-5mm rounded river gravel. The borehole annulus was filled with slow acting bentonite pellets above the uppermost screened interval to seal the annulus and prevent short circuiting of surface water into the bore screen. Bore casing was left with an approximate 0.5-1m stickup above surrounding ground level.

A steel stickup monument was concreted around the top of each bore casing.

Monitoring bore construction logs are presented as *Attachment B*. Bore construction details are summarised in *Table 1*.

At MB01 field observations indicated the presence of groundwater in weathered material in the upper 5m of the subsurface, as well as water in the underlying fractured bedrock. A shallow (6.7m deep) bore and a deep (28.5m deep) bore were installed at MB01 and the bores were referred to as MB01S (shallow) and MB01D (deep). The WMP stipulated that nested wells be considered where multiple groundwater sources were likely to be present.

Each monitoring bore was developed after installation. Deeper bores (MB01D, and MB02) were bailed dry using a bore specific disposable bailer. The shallow bore (MB01S) was screened in relatively permeable near surface aquifer and was developed by bailing approximately 60L after installation.

Four boreholes were drilled within a 200m radius of MB03. The first three boreholes were advanced to a depth of 28.5m below ground level. Drill cuttings were dry throughout each borehole. Holes were left open for approximately 1 hour after drilling and did not make water. A fourth borehole was drilled to a depth of approximately 24.5m. Moist cuttings were encountered approximately 18-20m below ground level but the hole did not make water. Bore casing and screen was installed into the dry hole, which had extended beyond the targeted depth of 670m AHD.

Bore ID	Easting	Northing	Approx. Surface Elevation (AHD)	Depth to Bottom (btc)	Screened Intervals (bgl)	Stickup (agl)	Depth to Water (btc)
MB01S	235245	6281077	700m	7.42m	3.7-6.7m	0.8m	4.63m
MB01D	235259	6281098	700m	29.30m	20-23m 26-28.5m	0.8m	5.49m
MB02	235915	6280398	710m	29.10m	10.5-13.5m 22.5-28.5m	0.6m	17.43m
MB03	236419	6281786	690m	25.31m	18.5-24.5m	0.4m	Dry

Table 1: Monitoring Bore Construction Details

Eastings and northings are MGA Zone 56.

btc = below top of casing

bgl = below ground level

agl = above ground level

5 Groundwater Sampling Methodology

Each monitoring bore was gauged using an electronic dip meter prior to any disturbance of the water column. Bores were gauged on 10 January 2018. The depth to water was measured from the top of casing at each bore. MB03 was installed into a dry hole and the hole was found to be dry at the time of gauging.

Observations made during installation works indicated that the deep bores intersected very low yielding fractured rock. The estimated bore yield indicated that sampling via continuous pumping (even using low flow methods) was not appropriate for the deeper bores.

Deep bores were purged dry using a bore specific disposable bailer. The deep bores were purged on 10 January 2018. The wells were allowed to recover for a period of approximately 18 hours prior to sample collection. The bailer was lowered gently into the deep bores to collect samples that were free of suspended sediment. After samples had been collected additional water was bailed from the deep bores to allow measurement of field water quality parameters.

The shallow bore (MB01S) was purged by bailing more than 3 well volumes. Water samples were collected from MB01S after purging. Water quality parameters were measured regularly during purging of MB01S to assess the effectiveness of purging.

A water sample was collected from a sump in the pit floor on 10 January 2018. An unpreserved sample bottle was filled directly from the ponded water in the sump. This bottle was then used to fill preserved sample bottles and samples requiring field filtering. Once sampling was complete field water quality parameters were measured. The water quality meter was placed in the pond and allowed to equilibrate for a period of approximately 10 minutes. The field water quality parameters were then recorded.

Water quality measurements were made using a YSI water quality meter hired from Airmet Scientific. The meter was calibrated prior to dispatch. A calibration record for the water quality meter is presented as *Attachment C*.

Water samples were collected into laboratory supplied bottles, each marked with the appropriate identification. Sample bottles were appropriately preserved where necessary. The samples for dissolved metals analysis were filtered in the field using disposable 45μ m filters. The sampler wore disposable nitrile gloves at all times during sampling to minimise potential for cross contamination. Samples were placed into an esky with ice immediately after collection. Ice was replenished as required to ensure samples remained cool whilst in storage.

Water samples were dispatched to ALS Lithgow laboratory on the afternoon of 11 January 2018. It is understood that the samples were forwarded to the ALS Sydney laboratory for analysis.

Groundwater samples collected from each monitoring bore were analysed for major cations, major anions, nutrients and dissolved metals as specified in Table 37 of the WMP (Groundwork Plus, 2017). The water samples collected from the pit were analysed for major cations, major anions, nutrients, dissolved metals, total recoverable hydrocarbons (TRH), benzene, toluene, ethylbenzene, xylenes (BTEX) and polycyclic aromatic hydrocarbons (PAHs) as specified in Table 37 of the WMP (Groundwork Plus, 2017).

6 Field Observations

Field observations were recorded on bore sampling forms, which are presented as *Attachment D*. Depth to water results and measured field parameters at the time of sampling are presented in *Table 2*.

Bore ID	DTW (btc)	Temp (⁰C)	DO (ppm)	EC (µS/cm)	рН	ORP (mV)
MB01S	4.63m	15.9	6.08	575	6.27	-11.6
MB01D	5.49m	16.7	2.64	1170	7.02	-22
MB02	17.43m	16.4	3.73	1210	7.03	-5
MB03	Dry	-	-	-	-	-
Pit Water	-	21.9	4.3	820	7	8

Table 2: Summary of Field Observations

MB03 was dry at the time of sampling. Groundwater samples collected from MB01D and MB02 were clear and colourless and free of significant suspended sediment. Water sampled from MB01S was mildly turbid due to disturbance of fines during well purging.

Water within the pit sump was clear and colourless and free of surface sheen and unnatural odour.

7 Analytical Results

The certificate of analysis for water samples is presented as Attachment E.

8 Water Level Logger Installation

Water level data loggers were installed in MB01S, MB01D and MB02 at the completion of groundwater sampling. MB03 was dry at the time of monitoring so it was not necessary to install a logger in this borehole.

All water level loggers were set to record water level at 6 hour intervals commencing 12am on 12 January 2018. The water level data loggers were not vented. A barologger was deployed to record air pressure at the same recording interval to allow water level logger readings to be corrected to account for changes in air pressure.

Data loggers were suspended from the underside of the plastic well cap using stainless steel cable and stainless steel wire rope grips. The data loggers used at the site had an ideal working range of 0-10m. At MB01S the logger was suspended approximately 0.5m from the bottom of the bore casing (approximately 2.5m below the standing water level). At MB01D and MB02 the loggers was suspended approximately 5m below the standing water levels.

The barologger was suspended approximately 1m below the top of casing within MB03.

Water level logger installation details are summarised in Table 3.

Bore ID	Depth to Water (m btc)	Depth to Bottom (m btc)	Logger Depth (m btc)	
MB01S	4.63m	7.42m	7.0m	
MB01D	5.49m	29.30m	11.0m	
MB02	17.43m	16.4	23.0m	
MB03	Dry	25.31m	1.0m (barologger)	

Table 3: Water Level Logger Heights

m btc = metres below top of casing.

If you have any questions regarding the works outlined in this report please contact the undersigned on 0407 875 302.

Kind Regards

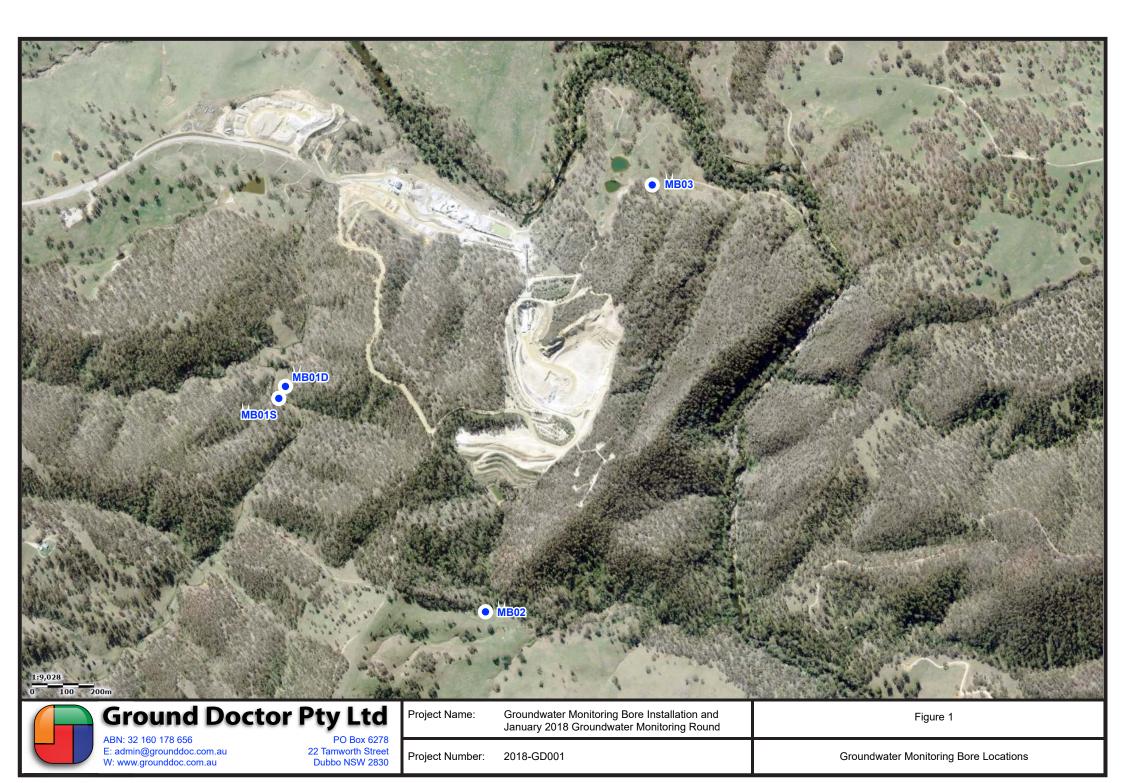
James Morrow Environmental Engineer Ground Doctor Pty Ltd 2018-GD001-L1

Attachment A – Figure

Attachment B – Monitoring Bore Construction Logs

Attachment C – Water Quality Meter Calibration Record

Attachment D – Groundwater Sampling Forms


Attachment E – Laboratory Certificate of Analysis

9 References

• Groundwork Plus (2017), "Austen Quarry Water Management Plan", Report Number 1517_610_002_RPTO_Water Management Plan_V8, 10 October 2017

Attachment A

Figure

Attachment B

Monitoring Bore Construction Logs

Borehole ID: MB01D

Project No.: 2018-GD001

Project Name: Austen Quarry Groundwater Monitoring

Client: Hy-tec Industries Pty Ltd

Site Address: 391 Jenolan Caves Road, Hartley, NSW

22 Tamworth Street PO Box 6278 DUBBO NSW 2830

ph: 0407 875 302 fx: (02) 8607 8122 admin@grounddoc.com.au

		SUBSURFACE PROFILE		S	AMPLE	C	CONSTRUCTION		
Depth (m)	Symbol	Description	Depth/Elev.	Sample ID	PID / Odour	Well Diagram	Materials Used		
-2 -1		Ground Surface Silty Sand: Gey-brown, silt and fine sand, moist. Weathered Rhyolite: Grey-brown, dry.	0.0	-			0.8m Stickup Steel Monument		
3 4 5		Soft layer 4-5m bgl. Cutting damp but hole did not make water during drilling. Rhyolite: Grey, dry, hard. Water strike in soft layer 21-22m. Hole made water at rod	5.0				Annulus Filled with Drill Cuttings (0.3-10m bgl)		
8 9 10		change.					50mm ID Screw Fit Class 18 uPVC Blank Casing (-1-20m bgl)		
12 13 14 15 16							Bentonite Seal (10-19m bgl)		
17 18 19 20 21							Gravel Pack (3-5mm) Rounded River Gravel (19-28.5m bgl) 50mm ID Screw Fit Class 18 uPVC		
22 23 24 25 26							50mm ID Screw Fit Class 10 uP VC 50mm ID Screw Fit Class 18 uPVC Blank Casing (23-26m bgl)		
27 28 29		End of Hole at 28.5m in Rhyolite.	28.5	-			50mm ID Screw Fit Class 18 uPVC Machine Slotted Screen (26-28.5m bgl) 50mm ID Class 18 PVC End Cap (28.5m)		
29 30 31 32							\y		

Drilled By: Premier Drill and Blast Drill Method: Air Rotary (Top Hammer) Drill Date: 19 December 2017

Borehole ID: MB01S

Project No.: 2018-GD001

Project Name: Austen Quarry Groundwater Monitoring

Client: Hy-tec Industries Pty Ltd

Site Address: 391 Jenolan Caves Road, Hartley, NSW

22 Tamworth Street PO Box 6278 DUBBO NSW 2830

ph: 0407 875 302 fx: (02) 8607 8122 admin@grounddoc.com.au

SUBSURFACE PROFILE				S	AMPLE	CONSTRUCTION		
Depth (m)	Symbol	Description		Depth/Elev. Sample ID PID / Odour		Well Diagram	Materials Used	
-2 -1 -1 0 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1		Silly Sand: Gey-brown, silt and fine sand, moist. Weathered Rhyolite: Grey-brown, dry. Soft layer 4-5m bgl. Water strike during drilling. Provide: Grey, dry, hard. Water strike in soft layer 21-22m. Hole made water at rod change. End of Hole at 6.7m in Rhyolite.	0.0				0.7m Stickup Steel Monument Bentonite Seal (0.3-2m bgl) 50mm ID Screw Fit Class 18 uPVC Blank Casing (-1-3.7m bgl) Gravel Pack (3-5mm) Rounded River Gravel (2-6.7m bgl) 50mm ID Screw Fit Class 18 uPVC Machine Slotted Screen (3.7-6.7m bgl) 50mm ID Class 18 PVC End Cap (6.7m)	

Drilled By: Premier Drill and Blast Drill Method: Air Rotary (Top Hammer) Drill Date: 19 December 2017

Borehole ID: MB02

Project No.: 2018-GD001

Project Name: Austen Quarry Groundwater Monitoring

Client: Hy-tec Industries Pty Ltd

Site Address: 391 Jenolan Caves Road, Hartley, NSW

22 Tamworth Street PO Box 6278 DUBBO NSW 2830

ph: 0407 875 302 fx: (02) 8607 8122 admin@grounddoc.com.au

		SUBSURFACE PROFILE		S	AMPLE	(CONSTRUCTION				
Depth (m)	Symbol	Description		ev.				Sample ID	PID / Odour	Well Diagram	Materials Used
-2 -1 -1 -1 -1 -1 -2 -1 -1 -1 -1 -1 -2 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1		Ground Surface Silty Sand: Brown, silt and fine sand, moist. Rhyolite: Light brown, red and white, dry. Possible moisture at top of granite (approx 8m). Hole did not make water. Granite: Grey Brown, Hard, Dry.	0.0 1.0 8.0				0.6m Stickup Steel Monument Bentonite Seal (0.3-3m bgl) 50mm ID Screw Fit Class 18 uPVC Blank Casing (-1-10.5m bgl)				
11 12 13 14 15 16 17 19 20 21 22 21 22 23 24		Rhyolite: Bluey Grey, dry, hard. Weak layer 22-24m. Moisture in cuttings but hole did not make water in 15 minutes at rod change.	13.0				50mm ID Screw Fit Class 18 uPVC Machine Slotted Screen (10.5-13.5m bgl) 50mm ID Screw Fit Class 18 uPVC Blank Casing (13.5-22.5m bgl) Gravel Pack (3-5mm) Rounded River Gravel (3-28.5m bgl)				
25 26 27 28 29 30 31 31		End of Hole at 28.5m in Rhyolite.	28.5				50mm ID Screw Fit Class 18 uPVC Machine Slotted Screen (22.5-28.5m bgl) 50mm ID Class 18 PVC End Cap (28.5m)				

<u>Drilled By:</u> Premier Drill and Blast <u>Drill Method:</u> Air Rotary (Top Hammer) <u>Drill Date:</u> 18 December 2017

Borehole ID: MB03

Project No.: 2018-GD001

Project Name: Austen Quarry Groundwater Monitoring

Client: Hy-tec Industries Pty Ltd

Site Address: 391 Jenolan Caves Road, Hartley, NSW

22 Tamworth Street PO Box 6278 DUBBO NSW 2830

ph: 0407 875 302 fx: (02) 8607 8122 admin@grounddoc.com.au

	SUBSURFACE PROFILE		SAMPLE			CONSTRUCTION		
Depth (m) Symbol	Description	Depth/Elev.	Sample ID	PID / Odour	Well Diagram	Materials Used		
-2 -1 -2 -1 -2 -1 -2 -1 -2 -1 -2 -1 -2 -1 -2 -1 -2 -1 -1 -2 -1 -1 -2 -1 -2 -1 -1 -2 -1 -2 -2 -1 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2	Wathered Granite: Orange- brown, clayey sand and gravel, fine sand to medium gravel, dry. Granite: Grey Brown, Hard, Dry. Weathered layer18-20m with moist cuttings. Hole did not make water. Meathered layer18-20m with moist cuttings. Hole did not make water.	0.0				0.8m Stickup Steel Monument Bentonite Seal (0.3-5m bgl) 50mm ID Screw Fit Class 18 uPVC Blank Casing (-1-18.5m bgl) Gravel Pack (3-5mm) Rounded River Gravel (5-24.5m bgl) 50mm ID Screw Fit Class 18 uPVC Machine Slotted Screen (18.5-24.5m bgl) 50mm ID Class 18 PVC End Cap (24.5m)		

Drilled By: Premier Drill and Blast Drill Method: Air Rotary (Top Hammer) Drill Date: 19 December 2017

Attachment C

Water Quality Meter Calibration Record

Multi Parameter Water Meter

Instrument	YSI Quatro Pro Plus
Serial No.	11K101271

02/01/2018

Pass Comments Test ltem Charge Condition Battery ✓ ✓ Fuses Capacity 1 Switch/keypad Operation ✓ Intensity Display √ Operation 1 (segments) Grill Filter Condition √ Seal 1 PCB Condition 1 1 Connectors Condition 1 Sensor 1. pH ✓ 2. mV 1 3. EC ✓ 4. D.O 1 5. Temp 1 Beeper Alarms 1 Settings 1 Software Version 1 Data logger Operation 1 Download Operation Other tests:

Certificate of Calibration

This is to certify that the above instrument has been calibrated to the following specifications:

Sensor	Serial no	Standard Solutions	Certified	Solution Bottle Number	Instrument Reading
1. pH 10.00		pH 10.00		309865	pH 9.87
2. pH 7.00		pH 7.00		307928	pH 6.95
3. pH 4.00		pH 4.00		307927	pH 4.06
4. mV		231.8mV		311901/300322	231.8mV
5. EC		2.76mS		306341	2.75mS
6. D.O		0.00 ppm		5253	0.01ppm
7. Temp		21.0°C	T	MultiTherm	20.7°C

Calibrated by: Michelle C WJgner Michelle Wagner

Calibration date: 02/01/2018

Next calibration due: 01/07/2018

Attachment D

Groundwater Sampling Forms

Monitoring Bore ID:	MB01S
Date:	10-Jan-18

Depth to Water:	4.63m	
Depth to Bottom:	7.42m	
Saturated Well Depth:	2.79m	
Well Volume:	5.6L	(Saturated Well Depth x 2L)

Purge Volume (L)	Temp (oC)	DO (ppm)	EC (uS/cm)	рН	ORP (mV)
5L	16.4	3.25	591	6.56	-10.3
10L	16	3.66	585	6.56	3.9
15L	16	0.01	581	6.3	12.7
20L	16	0.08	576	6.17	25
25L	15.9	6.08	575	6.27	-11.6

Description of Works / O	bservations:			
Good water inflow.				
Well bailed continuously to remo	ove 25L and was t	then sampled.		
Groundwater was turbid (grey-b	rown) during pur	ging.		
Groundwater was allowed to set	tle before sampli	ng to minimise tu	rbidy in samples	

Monitoring Bore ID:	MB01D
Date:	10 and 11 January 2018

Depth to Water:	5.49m
Depth to Bottom:	29.3m
Saturated Well Depth:	23.81L
Well Volume:	47.6L

Field Parameters:

Г

Temp (oC)	DO (ppm)	EC (uS/cm)	рН	ORP (mV)
16.7	2.64	1170	7.02	-22

Description of Works / Observations:	

Well bailed dry after 60L removed (well volume plus annulus volume)

Water was turbid grey-brown during purging, becoming siltier with increased drawdown.

Well allowed to recover overnight.

Water sampled was clear and colourless (low turbidy).

Monitoring Bore ID:	MB02
Date:	10 and 11 January 2018

Depth to Water:	17.43m
Depth to Bottom:	29.10m
Saturated Well Depth:	11.67m
Well Volume:	23.3L

Temp (oC)	DO (ppm)	EC (uS/cm)	рН	ORP (mV)
16.4	3.73	1210	7.03	-5

Description of Works / Observations:				
Well bailed dry after 30L removed (well volume plus annulus volume)				
Water was turbid grey during purging, becoming siltier with increased drawdown.				
Well allowed to recover overnight.				
Water sampled was clear and colourless (low turbidy).				

Monitoring Bore ID:	MB03
Date:	10-Jan-18

Depth to Water:	Well Dry
Depth to Bottom:	25.31m
Saturated Well Depth:	NA
Well Volume:	NA

Purge Volume (L)	Temp (oC)	DO (ppm)	EC (uS/cm)	рН	ORP (mV)
NA					

ations:		
-	ations:	ations:

Monitoring Bore ID:	Pit Sump
Date:	10-Jan-18

Depth to Water:	NA
Depth to Bottom:	NA
Saturated Well Depth:	NA
Well Volume:	NA

Temp (oC)	DO (ppm)	EC (uS/cm)	рН	ORP (mV)
21.9	4.3	820	7	8

Description of Works / Observations:	
Water in pit sump was clear and colourless.	
No hydrocarbon sheen visible on surface of pit water.	
No unnatural odour noted in sampled water.	

Attachment E

Laboratory Certificate of Analysis

CERTIFICATE OF ANALYSIS

Work Order	ES1801825	Page	: 1 of 7
Client	: HY-TEC INDUSTRIES PTY LTD	Laboratory	Environmental Division Sydney
Contact	: MARK TAYLOR	Contact	: Customer Services ES
Address	: 664 OLD GYMPIE RD	Address	: 277-289 Woodpark Road Smithfield NSW Australia 2164
	NARANGBA QLD, AUSTRALIA 4504		
Telephone	:	Telephone	: +61-2-8784 8555
Project	: Hytec Austen Quarry Baseline Groundwater Monitoring	Date Samples Received	: 12-Jan-2018 08:30
Order number	:	Date Analysis Commenced	: 12-Jan-2018
C-O-C number	:	Issue Date	: 22-Jan-2018 11:43
Sampler	: MARK TAYLOR		NATA
Site	:		
Quote number	: EN/222/17		Accreditation No. 825
No. of samples received	: 5		Accredited for compliance with
No. of samples analysed	: 5		ISO/IEC 17025 - Testing

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results
- Surrogate Control Limits

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with Quality Review and Sample Receipt Notification.

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories	Position	Accreditation Category
Ankit Joshi	Inorganic Chemist	Sydney Inorganics, Smithfield, NSW
Celine Conceicao	Senior Spectroscopist	Sydney Inorganics, Smithfield, NSW
Edwandy Fadjar	Organic Coordinator	Sydney Organics, Smithfield, NSW

General Comments

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contact for details.

Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society. LOR = Limit of reporting

^ = This result is computed from individual analyte detections at or above the level of reporting

 \emptyset = ALS is not NATA accredited for these tests.

~ = Indicates an estimated value.

• TDS by method EA-015 may bias high for various samples due to the presence of fine particulate matter, which may pass through the prescribed GF/C paper.

Benzo(a)pyrene Toxicity Equivalent Quotient (TEQ) is the sum total of the concentration of the eight carcinogenic PAHs multiplied by their Toxicity Equivalence Factor (TEF) relative to Benzo(a)pyrene. TEF values are provided in brackets as follows: Benz(a)anthracene (0.1), Chrysene (0.01), Benzo(b+j) & Benzo(k)fluoranthene (0.1), Benzo(a)pyrene (1.0), Indeno(1.2.3.cd)pyrene (0.1), Dibenz(a.h)anthracene (1.0), Benzo(g.h.i)perylene (0.01). Less than LOR results for 'TEQ Zero' are treated as zero.

Sub-Matrix: WATER (Matrix: WATER)		Clie	ent sample ID	MB01S	MB01D	MB02	PIT	DUPA
	Cl	ient sampli	ng date / time	10-Jan-2018 00:00				
Compound	CAS Number	LOR	Unit	ES1801825-001	ES1801825-002	ES1801825-003	ES1801825-004	ES1801825-005
				Result	Result	Result	Result	Result
A005P: pH by PC Titrator								
pH Value		0.01	pH Unit	7.81	7.90	7.97	7.59	7.60
EA010P: Conductivity by PC Titrator								
Electrical Conductivity @ 25°C		1	µS/cm	556	1090	1190	786	784
A015: Total Dissolved Solids dried a	at 180 ± 5 °C							
Total Dissolved Solids @180°C		10	mg/L	376	750	722	640	634
A075: Redox Potential			_					1
Redox Potential		0.1	mV	74.0	61.0	59.0	57.0	57.0
pH Redox		0.01	pH Unit	7.35	7.40	7.46	7.01	6.92
D037P: Alkalinity by PC Titrator			••••					
Hydroxide Alkalinity as CaCO3	DMO-210-001	1	mg/L	<1	<1	<1	<1	<1
Carbonate Alkalinity as CaCO3	3812-32-6	1	mg/L	<1	<1	<1	<1	<1
Bicarbonate Alkalinity as CaCO3	71-52-3	1	mg/L	216	307	476	181	183
Total Alkalinity as CaCO3		1	mg/L	216	307	476	181	183
D040F: Dissolved Major Anions			5					
Silicon	7440-21-3	0.05	mg/L	9.15	24.4	9.60	15.2	15.1
		0.00	<u>9</u> / _	0.10		0.00	10.2	1011
ED041G: Sulfate (Turbidimetric) as SO Sulfate as SO4 - Turbidimetric	14808-79-8	1	mg/L	22	259	120	183	211
		1	mg/E		205	120	100	
D045G: Chloride by Discrete Analys Chloride		1	mg/L	43	58	68	9	10
	16887-00-6	I	mg/L	+5	50	00	3	10
D093F: Dissolved Major Cations		4			444	50	74	74
Calcium	7440-70-2	1	mg/L	66	144	52	71	71
Magnesium	7439-95-4	1 1	mg/L	<u>14</u> 23	16 95	24 200	45 26	44 25
Sodium	7440-23-5	1	mg/L	23	3	200		5
Potassium	7440-09-7	I	mg/L	1	3	2	4	5
G020F: Dissolved Metals by ICP-MS		0.04		0.01	0.01	0.04	0.01	0.01
Aluminium	7429-90-5	0.01	mg/L	<0.01	<0.01	<0.01	<0.01	<0.01
Arsenic	7440-38-2	0.001	mg/L	0.003	0.005	0.004	<0.001	< 0.001
Beryllium	7440-41-7	0.001	mg/L	<0.001	< 0.001	<0.001	<0.001	< 0.001
Barium	7440-39-3	0.001	mg/L	0.015	0.080	0.065	0.032	0.032
Cadmium	7440-43-9	0.0001	mg/L	<0.0001	<0.0001	<0.0001	0.0088	0.0086
Chromium	7440-47-3	0.001	mg/L	<0.001	<0.001	<0.001	<0.001	< 0.001
Cobalt	7440-48-4	0.001	mg/L	<0.001	0.002	<0.001	0.003	0.004
Copper	7440-50-8	0.001	mg/L	0.001	<0.001	<0.001	<0.001	< 0.001
Lead	7439-92-1	0.001	mg/L	<0.001	<0.001	<0.001	<0.001	<0.001

Sub-Matrix: WATER (Matrix: WATER)		Clie	ent sample ID	MB01S	MB01D	MB02	PIT	DUPA
	Clie	ent samplir	ng date / time	10-Jan-2018 00:00				
Compound	CAS Number	LOR	Unit	ES1801825-001	ES1801825-002	ES1801825-003	ES1801825-004	ES1801825-005
			-	Result	Result	Result	Result	Result
G020F: Dissolved Metals by IC	CP-MS - Continued							
Manganese	7439-96-5	0.001	mg/L	0.123	0.353	0.038	2.00	2.03
Molybdenum	7439-98-7	0.001	mg/L	0.002	0.030	0.009	0.004	0.004
Nickel	7440-02-0	0.001	mg/L	0.001	0.018	0.003	0.008	0.007
Selenium	7782-49-2	0.01	mg/L	<0.01	<0.01	<0.01	<0.01	<0.01
Silver	7440-22-4	0.001	mg/L	<0.001	<0.001	<0.001	<0.001	<0.001
Strontium	7440-24-6	0.001	mg/L	0.208	0.897	2.36	0.298	0.295
Titanium	7440-32-6	0.01	mg/L	<0.01	<0.01	<0.01	<0.01	<0.01
Vanadium	7440-62-2	0.01	mg/L	<0.01	<0.01	<0.01	<0.01	<0.01
Zinc	7440-66-6	0.005	mg/L	0.030	<0.005	<0.005	0.443	0.442
Boron	7440-42-8	0.05	mg/L	<0.05	0.33	0.32	<0.05	<0.05
Iron	7439-89-6	0.05	mg/L	<0.05	<0.05	<0.05	<0.05	<0.05
G035F: Dissolved Mercury by	FIMS							
Mercury	7439-97-6	0.0001	mg/L	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001
K055G: Ammonia as N by Disc			_					
Ammonia as N	7664-41-7	0.01	mg/L	0.03	0.03	<0.01	0.40	0.41
K057G: Nitrite as N by Discre			5					
Nitrite as N	14797-65-0	0.01	mg/L	<0.01	<0.01	<0.01	0.01	0.01
		0.01	ing/2	0.01	.0.01		0.01	0.01
K058G: Nitrate as N by Discre Nitrate as N	14797-55-8	0.01	mg/L	0.05	0.08	<0.01	4.45	4.45
			ilig/L	0.05	0.00	-0.01	4.40	4.40
K059G: Nitrite plus Nitrate as		-				-0.04		
Nitrite + Nitrate as N		0.01	mg/L	0.05	0.08	<0.01	4.46	4.46
N055: Ionic Balance								
Total Anions		0.01	meq/L	5.99	13.2	13.9	7.68	8.33
Total Cations		0.01	meq/L	5.47	12.7	13.3	8.48	8.38
Ionic Balance		0.01	%	4.49	1.74	2.22	4.95	0.29
P075(SIM)B: Polynuclear Aron	natic Hydrocarbons							
Naphthalene	91-20-3	1.0	µg/L				<1.0	<1.0
Acenaphthylene	208-96-8	1.0	µg/L				<1.0	<1.0
Acenaphthene	83-32-9	1.0	µg/L				<1.0	<1.0
Fluorene	86-73-7	1.0	µg/L				<1.0	<1.0
Phenanthrene	85-01-8	1.0	µg/L				<1.0	<1.0
Anthracene	120-12-7	1.0	µg/L				<1.0	<1.0
Fluoranthene	206-44-0	1.0	µg/L				<1.0	<1.0
Pyrene	129-00-0	1.0	µg/L				<1.0	<1.0

Sub-Matrix: WATER (Matrix: WATER)		Clie	ent sample ID	MB01S	MB01D	MB02	PIT	DUPA
	Cl	ient samplii	ng date / time	10-Jan-2018 00:00				
Compound	CAS Number	LOR	Unit	ES1801825-001	ES1801825-002	ES1801825-003	ES1801825-004	ES1801825-005
				Result	Result	Result	Result	Result
EP075(SIM)B: Polynuclear Aromatic F		inued						
Benz(a)anthracene	56-55-3	1.0	µg/L				<1.0	<1.0
Chrysene	218-01-9	1.0	µg/L				<1.0	<1.0
Benzo(b+j)fluoranthene	205-99-2 205-82-3	1.0	µg/L				<1.0	<1.0
Benzo(k)fluoranthene	207-08-9	1.0	µg/L				<1.0	<1.0
Benzo(a)pyrene	50-32-8	0.5	µg/L				<0.5	<0.5
Indeno(1.2.3.cd)pyrene	193-39-5	1.0	µg/L				<1.0	<1.0
Dibenz(a.h)anthracene	53-70-3	1.0	µg/L				<1.0	<1.0
Benzo(g.h.i)perylene	191-24-2	1.0	µg/L				<1.0	<1.0
Sum of polycyclic aromatic hydrocarbor	ns	0.5	µg/L				<0.5	<0.5
^ Benzo(a)pyrene TEQ (zero)		0.5	µg/L				<0.5	<0.5
EP080/071: Total Petroleum Hydrocar	bons							
C6 - C9 Fraction		20	µg/L				<20	<20
C10 - C14 Fraction		50	µg/L				<50	<50
C15 - C28 Fraction		100	µg/L				<100	<100
C29 - C36 Fraction		50	µg/L				<50	<50
[∿] C10 - C36 Fraction (sum)		50	µg/L				<50	<50
EP080/071: Total Recoverable Hydroc	arbons - NEPM 201	3 Fractio	าร					
C6 - C10 Fraction	C6_C10	20	µg/L				<20	<20
C6 - C10 Fraction minus BTEX	C6_C10-BTEX	20	µg/L				<20	<20
(F1) >C10 - C16 Fraction		100	μg/L				<100	<100
>C16 - C34 Fraction		100	μg/L				<100	<100
>C34 - C40 Fraction		100	μg/L				<100	<100
^ >C10 - C40 Fraction (sum)		100	μg/L				<100	<100
>C10 - C16 Fraction minus Naphthalene		100	μg/L				<100	<100
(F2)			P9'-					
EP080: BTEXN								
Benzene	71-43-2	1	µg/L				<1	<1
Toluene	108-88-3	2	μg/L				<2	<2
Ethylbenzene	100-41-4	2	μg/L				<2	<2
meta- & para-Xylene	108-38-3 106-42-3	2	μg/L				<2	<2
ortho-Xylene	95-47-6	2	μg/L				<2	<2
^ Total Xylenes		2	μg/L				<2	<2
^ Sum of BTEX		1	μg/L				<1	<1
Naphthalene	91-20-3	5	μg/L				<5	<5

Sub-Matrix: WATER (Matrix: WATER)		Cli	ent sample ID	MB01S	MB01D	MB02	PIT	DUPA
	Cli	ent sampli	ing date / time	10-Jan-2018 00:00				
Compound	CAS Number	LOR	Unit	ES1801825-001	ES1801825-002	ES1801825-003	ES1801825-004	ES1801825-005
				Result	Result	Result	Result	Result
EP080: BTEXN - Continued								
EP075(SIM)S: Phenolic Compound Su	urrogates							
Phenol-d6	13127-88-3	1.0	%				23.9	22.4
2-Chlorophenol-D4	93951-73-6	1.0	%				55.6	55.0
2.4.6-Tribromophenol	118-79-6	1.0	%				50.1	37.9
EP075(SIM)T: PAH Surrogates								
2-Fluorobiphenyl	321-60-8	1.0	%				77.7	77.3
Anthracene-d10	1719-06-8	1.0	%				96.5	92.2
4-Terphenyl-d14	1718-51-0	1.0	%				91.1	84.1
EP080S: TPH(V)/BTEX Surrogates								
1.2-Dichloroethane-D4	17060-07-0	2	%				119	120
Toluene-D8	2037-26-5	2	%				121	121
4-Bromofluorobenzene	460-00-4	2	%				106	111

Surrogate Control Limits

Sub-Matrix: WATER		Recovery	/ Limits (%)
Compound	CAS Number	Low	High
EP075(SIM)S: Phenolic Compound S	urrogates		
Phenol-d6	13127-88-3	10	44
2-Chlorophenol-D4	93951-73-6	14	94
2.4.6-Tribromophenol	118-79-6	17	125
EP075(SIM)T: PAH Surrogates			
2-Fluorobiphenyl	321-60-8	20	104
Anthracene-d10	1719-06-8	27	113
4-Terphenyl-d14	1718-51-0	32	112
EP080S: TPH(V)/BTEX Surrogates			
1.2-Dichloroethane-D4	17060-07-0	71	137
Toluene-D8	2037-26-5	79	131
4-Bromofluorobenzene	460-00-4	70	128

QUALITY CONTROL REPORT

Work Order	: ES1801825	Page	: 1 of 9
Client	: HY-TEC INDUSTRIES PTY LTD	Laboratory	: Environmental Division Sydney
Contact	: MARK TAYLOR	Contact	: Customer Services ES
Address	: 664 OLD GYMPIE RD NARANGBA QLD, AUSTRALIA 4504	Address	: 277-289 Woodpark Road Smithfield NSW Australia 2164
Telephone	:	Telephone	: +61-2-8784 8555
Project	: Hytec Austen Quarry Baseline Groundwater Monitoring	Date Samples Received	: 12-Jan-2018
Order number	:	Date Analysis Commenced	: 12-Jan-2018
C-O-C number	:	Issue Date	22-Jan-2018
Sampler	: MARK TAYLOR		AC-MRA NAT
Site	:		
Quote number	: EN/222/17		Accreditation No. 8
No. of samples received	: 5		Accredited for compliance wi
No. of samples analysed	: 5		ISO/IEC 17025 - Testi

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full. This Quality Control Report contains the following information:

- Laboratory Duplicate (DUP) Report; Relative Percentage Difference (RPD) and Acceptance Limits
- Method Blank (MB) and Laboratory Control Spike (LCS) Report; Recovery and Acceptance Limits
- Matrix Spike (MS) Report; Recovery and Acceptance Limits

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories	Position	Accreditation Category
Ankit Joshi	Inorganic Chemist	Sydney Inorganics, Smithfield, NSW
Celine Conceicao	Senior Spectroscopist	Sydney Inorganics, Smithfield, NSW
Edwandy Fadjar	Organic Coordinator	Sydney Organics, Smithfield, NSW

General Comments

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis. Where the LOR of a reported result differs from standard LOR, this may be due to high

Key: Anonymous = Refers to samples which are not specifically part of this work order but formed part of the QC process lot

CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

RPD = Relative Percentage Difference

= Indicates failed QC

Laboratory Duplicate (DUP) Report

The quality control term Laboratory Duplicate refers to a randomly selected intralaboratory split. Laboratory duplicates provide information regarding method precision and sample heterogeneity. The permitted ranges for the Relative Percent Deviation (RPD) of Laboratory Duplicates are specified in ALS Method QWI-EN/38 and are dependent on the magnitude of results in comparison to the level of reporting: Result < 10 times LOR: No Limit; Result between 10 and 20 times LOR: 0% - 50%; Result > 20 times LOR: 0% - 20%.

Sub-Matrix: WATER						Laboratory I	Duplicate (DUP) Report		
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%)
EA005P: pH by PC T	Titrator (QC Lot: 13677	702)							
ES1801653-001	Anonymous	EA005-P: pH Value		0.01	pH Unit	6.04	6.36	5.16	0% - 20%
ES1801835-002	Anonymous	EA005-P: pH Value		0.01	pH Unit	6.42	6.38	0.625	0% - 20%
A010P: Conductivi	ity by PC Titrator (QC	Lot: 1367700)							
ES1801516-003	Anonymous	EA010-P: Electrical Conductivity @ 25°C		1	µS/cm	1210	1210	0.246	0% - 20%
ES1801835-002	Anonymous	EA010-P: Electrical Conductivity @ 25°C		1	µS/cm	1140	1140	0.00	0% - 20%
EA015: Total Dissol	ved Solids dried at 180	0 ± 5 °C (QC Lot: 1370909)							
EP1801189-001	Anonymous	EA015H: Total Dissolved Solids @180°C		10	mg/L	530	617	15.3	0% - 20%
ES1801903-001	Anonymous	EA015H: Total Dissolved Solids @180°C		10	mg/L	14500	12900	11.6	0% - 20%
EA075: Redox Poter	ntial (QC Lot: 1369498	3)							
ES1801825-001 MB01S	MB01S	EA075: Redox Potential		0.1	mV	74.0	67.0	9.93	0% - 20%
	EAU75: Redox Potential EA075: pH Redox		0.01	pH Unit	7.35	7.26	1.23	0% - 20%	
ED037P: Alkalinity b	by PC Titrator (QC Lot	: 1367703)							
ES1801809-001	Anonymous	ED037-P: Hydroxide Alkalinity as CaCO3	DMO-210-001	1	mg/L	<1	<1	0.00	No Limit
		ED037-P: Carbonate Alkalinity as CaCO3	3812-32-6	1	mg/L	<1	<1	0.00	No Limit
		ED037-P: Bicarbonate Alkalinity as CaCO3	71-52-3	1	mg/L	54	53	0.00	0% - 20%
		ED037-P: Total Alkalinity as CaCO3		1	mg/L	54	53	0.00	0% - 20%
ES1801835-002	Anonymous	ED037-P: Hydroxide Alkalinity as CaCO3	DMO-210-001	1	mg/L	<1	<1	0.00	No Limit
		ED037-P: Carbonate Alkalinity as CaCO3	3812-32-6	1	mg/L	<1	<1	0.00	No Limit
		ED037-P: Bicarbonate Alkalinity as CaCO3	71-52-3	1	mg/L	79	80	0.00	0% - 20%
		ED037-P: Total Alkalinity as CaCO3		1	mg/L	79	80	0.00	0% - 20%
D040F: Dissolved I	Major Anions (QC Lot	: 1367251)							
EW1800133-004	Anonymous	ED040F: Silicon	7440-21-3	0.05	mg/L	2.16	2.18	1.05	0% - 20%
ES1801756-001	Anonymous	ED040F: Silicon	7440-21-3	0.05	mg/L	2.79	2.82	0.952	0% - 20%
D041G: Sulfate (Tu	rbidimetric) as SO4 2-	- by DA (QC Lot: 1367254)							

Sub-Matrix: WATER						Laboratory	Duplicate (DUP) Report		
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%)
ED041G: Sulfate (T	urbidimetric) as SO4 2	2- by DA (QC Lot: 1367254) - continued							
ES1801825-002	MB01D	ED041G: Sulfate as SO4 - Turbidimetric	14808-79-8	1	mg/L	259	258	0.570	0% - 20%
ES1801776-020	Anonymous	ED041G: Sulfate as SO4 - Turbidimetric	14808-79-8	1	mg/L	382	425	10.6	0% - 20%
ED045G: Chloride	by Discrete Analyser	(QC Lot: 1367253)							
ES1801825-002	MB01D	ED045G: Chloride	16887-00-6	1	mg/L	58	58	0.00	0% - 20%
ES1801776-020	Anonymous	ED045G: Chloride	16887-00-6	1	mg/L	629	686	8.65	0% - 20%
ED093F: Dissolved	Major Cations (QC L	ot: 1374061)							
ES1801764-005	Anonymous	ED093F: Calcium	7440-70-2	1	mg/L	16	16	0.00	0% - 50%
		ED093F: Magnesium	7439-95-4	1	mg/L	9	8	0.00	No Limit
		ED093F: Sodium	7440-23-5	1	mg/L	12	12	0.00	0% - 50%
		ED093F: Potassium	7440-09-7	1	mg/L	3	3	0.00	No Limit
ES1801825-004	PIT	ED093F: Calcium	7440-70-2	1	mg/L	71	69	3.73	0% - 20%
		ED093F: Magnesium	7439-95-4	1	mg/L	45	40	10.3	0% - 20%
		ED093F: Sodium	7440-23-5	1	mg/L	26	26	0.00	0% - 20%
		ED093F: Potassium	7440-09-7	1	mg/L	4	5	0.00	No Limit
EG020F: Dissolved	I Metals by ICP-MS (Q	C Lot: 1374056)							
ES1801653-001	Anonymous	EG020B-F: Silver	7440-22-4	0.001	mg/L	<0.001	< 0.001	0.00	No Limit
		EG020B-F: Strontium	7440-24-6	0.001	mg/L	0.014	0.014	0.00	0% - 50%
		EG020B-F: Titanium	7440-32-6	0.01	mg/L	<0.01	<0.01	0.00	No Limit
ES1801825-004	25-004 PIT	EG020B-F: Silver	7440-22-4	0.001	mg/L	<0.001	<0.001	0.00	No Limit
		EG020B-F: Strontium	7440-24-6	0.001	mg/L	0.298	0.280	6.15	0% - 20%
		EG020B-F: Titanium	7440-32-6	0.01	mg/L	<0.01	<0.01	0.00	No Limit
EG020F: Dissolved	I Metals by ICP-MS (Q								
ES1801764-005	Anonymous	EG020A-F: Cadmium	7440-43-9	0.0001	mg/L	<0.0001	<0.0001	0.00	No Limit
	,	EG020A-F: Arsenic	7440-38-2	0.001	mg/L	<0.001	<0.001	0.00	No Limit
		EG020A-F: Beryllium	7440-41-7	0.001	mg/L	<0.001	<0.001	0.00	No Limit
		EG020A-F: Barium	7440-39-3	0.001	mg/L	0.032	0.032	0.00	0% - 20%
		EG020A-F: Chromium	7440-47-3	0.001	mg/L	<0.001	<0.001	0.00	No Limit
		EG020A-F: Cobalt	7440-48-4	0.001	mg/L	<0.001	<0.001	0.00	No Limit
		EG020A-F: Copper	7440-50-8	0.001	mg/L	<0.001	<0.001	0.00	No Limit
		EG020A-F: Lead	7439-92-1	0.001	mg/L	<0.001	<0.001	0.00	No Limit
		EG020A-F: Manganese	7439-96-5	0.001	mg/L	0.008	0.009	0.00	No Limit
		EG020A-F: Molybdenum	7439-98-7	0.001	mg/L	<0.001	<0.001	0.00	No Limit
		EG020A-F: Nickel	7440-02-0	0.001	mg/L	0.003	0.003	0.00	No Limit
		EG020A-F: Zinc	7440-66-6	0.005	mg/L	0.020	0.021	0.00	No Limit
		EG020A-F: Aluminium	7429-90-5	0.01	mg/L	0.02	0.02	0.00	No Limit
		EG020A-F: Selenium	7782-49-2	0.01	mg/L	<0.01	<0.01	0.00	No Limit
		EG020A-F: Vanadium	7440-62-2	0.01	mg/L	<0.01	<0.01	0.00	No Limit
		EG020A-F: Boron	7440-42-8	0.05	mg/L	<0.05	<0.05	0.00	No Limit
		EG020A-F: Iron	7439-89-6	0.05	mg/L	<0.05	< 0.05	0.00	No Limit

Sub-Matrix: WATER			[Laboratory I	Duplicate (DUP) Report		
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%)
EG020F: Dissolved	Metals by ICP-MS (QC Lot:	1374060) - continued							
ES1801825-004	PIT	EG020A-F: Cadmium	7440-43-9	0.0001	mg/L	0.0088	0.0080	8.86	0% - 20%
		EG020A-F: Arsenic	7440-38-2	0.001	mg/L	<0.001	<0.001	0.00	No Limit
		EG020A-F: Beryllium	7440-41-7	0.001	mg/L	<0.001	<0.001	0.00	No Limit
		EG020A-F: Barium	7440-39-3	0.001	mg/L	0.032	0.030	6.54	0% - 20%
		EG020A-F: Chromium	7440-47-3	0.001	mg/L	<0.001	<0.001	0.00	No Limit
		EG020A-F: Cobalt	7440-48-4	0.001	mg/L	0.003	0.003	0.00	No Limit
		EG020A-F: Copper	7440-50-8	0.001	mg/L	<0.001	<0.001	0.00	No Limit
		EG020A-F: Lead	7439-92-1	0.001	mg/L	<0.001	<0.001	0.00	No Limit
		EG020A-F: Manganese	7439-96-5	0.001	mg/L	2.00	2.04	1.94	0% - 20%
		EG020A-F: Molybdenum	7439-98-7	0.001	mg/L	0.004	0.003	0.00	No Limit
		EG020A-F: Nickel	7440-02-0	0.001	mg/L	0.008	0.007	0.00	No Limit
		EG020A-F: Zinc	7440-66-6	0.005	mg/L	0.443	0.415	6.61	0% - 20%
		EG020A-F: Aluminium	7429-90-5	0.01	mg/L	<0.01	<0.01	0.00	No Limit
		EG020A-F: Selenium	7782-49-2	0.01	mg/L	<0.01	<0.01	0.00	No Limit
		EG020A-F: Vanadium	7440-62-2	0.01	mg/L	<0.01	<0.01	0.00	No Limit
		EG020A-F: Boron	7440-42-8	0.05	mg/L	<0.05	<0.05	0.00	No Limit
		EG020A-F: Iron	7439-89-6	0.05	mg/L	<0.05	<0.05	0.00	No Limit
EG035F: Dissolved	Mercury by FIMS (QC Lot: 1	374057)							
ES1801728-001	Anonymous	EG035F: Mercury	7439-97-6	0.0001	mg/L	<0.0001	<0.0001	0.00	No Limit
ES1801825-001	MB01S	EG035F: Mercury	7439-97-6	0.0001	mg/L	<0.0001	<0.0001	0.00	No Limit
EK055G: Ammonia a	s N by Discrete Analyser(QC Lot: 1374484)							
ES1801653-001	Anonymous	EK055G: Ammonia as N	7664-41-7	0.01	mg/L	<0.01	<0.01	0.00	No Limit
ES1801883-003	Anonymous	EK055G: Ammonia as N	7664-41-7	0.01	mg/L	0.02	0.01	0.00	No Limit
EK057G: Nitrite as N	I by Discrete Analyser (QC	Lot: 1367252)							
ES1801825-002	MB01D	EK057G: Nitrite as N	14797-65-0	0.01	mg/L	<0.01	<0.01	0.00	No Limit
ES1801776-020	Anonymous	EK057G: Nitrite as N	14797-65-0	0.01	mg/L	18.6	20.5	9.87	0% - 20%
EK059G: Nitrite plus	s Nitrate as N (NOx) by Disc	crete Analyser (QC Lot: 1374485)							
ES1801653-001	Anonymous	EK059G: Nitrite + Nitrate as N		0.01	mg/L	0.06	0.06	0.00	No Limit
ES1801883-003	Anonymous	EK059G: Nitrite + Nitrate as N		0.01	mg/L	2.40	2.41	0.00	0% - 20%
EP080/071: Total Pet	roleum Hydrocarbons (QC	Lot: 1368463)			·				
EP1801189-001	Anonymous	EP080: C6 - C9 Fraction		20	µg/L	<20	<20	0.00	No Limit
ES1801840-002	Anonymous	EP080: C6 - C9 Fraction		20	μg/L	<20	<20	0.00	No Limit
EP080/071: Tot <u>al Re</u>	coverable Hydrocarb <u>ons - N</u>	IEPM 2013 Fractions (QC Lot: 1368463)							
EP1801189-001	Anonymous	EP080: C6 - C10 Fraction	C6_C10	20	μg/L	<20	<20	0.00	No Limit
ES1801840-002	Anonymous	EP080: C6 - C10 Fraction	 C6_C10	20	μg/L	<20	<20	0.00	No Limit
EP080: BTEXN (QC	-		_						1
EP1801189-001	Anonymous	EP080: Benzene	71-43-2	1	µg/L	<1	<1	0.00	No Limit
		EP080: Toluene	108-88-3	2	µg/L	<2	<2	0.00	No Limit
		EP080: Ethylbenzene	100-41-4	2	µg/L	<2	<2	0.00	No Limit

Page	5 of 9
Work Order	: ES1801825
Client	: HY-TEC INDUSTRIES PTY LTD
Project	: Hytec Austen Quarry Baseline Groundwater Monitoring

Sub-Matrix: WATER						Laboratory L	Duplicate (DUP) Report		
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%)
EP080: BTEXN (QC	Lot: 1368463) - continue	d							
EP1801189-001	Anonymous	EP080: meta- & para-Xylene	108-38-3	2	µg/L	<2	<2	0.00	No Limit
			106-42-3						
		EP080: ortho-Xylene	95-47-6	2	µg/L	<2	<2	0.00	No Limit
		EP080: Naphthalene	91-20-3	5	µg/L	<5	<5	0.00	No Limit
ES1801840-002 Anonymous	Anonymous	EP080: Benzene	71-43-2	1	µg/L	<1	<1	0.00	No Limit
		EP080: Toluene	108-88-3	2	µg/L	<2	<2	0.00	No Limit
		EP080: Ethylbenzene	100-41-4	2	µg/L	<2	<2	0.00	No Limit
		EP080: meta- & para-Xylene	108-38-3	2	µg/L	<2	<2	0.00	No Limit
			106-42-3						
		EP080: ortho-Xylene	95-47-6	2	µg/L	<2	<2	0.00	No Limit
		EP080: Naphthalene	91-20-3	5	µg/L	<5	<5	0.00	No Limit

Method Blank (MB) and Laboratory Control Spike (LCS) Report

The quality control term Method / Laboratory Blank refers to an analyte free matrix to which all reagents are added in the same volumes or proportions as used in standard sample preparation. The purpose of this QC parameter is to monitor potential laboratory contamination. The quality control term Laboratory Control Spike (LCS) refers to a certified reference material, or a known interference free matrix spiked with target analytes. The purpose of this QC parameter is to monitor method precision and accuracy independent of sample matrix. Dynamic Recovery Limits are based on statistical evaluation of processed LCS.

Sub-Matrix: WATER				Method Blank (MB)	Laboratory Control Spike (LCS) Report				
				Report	Spike	Spike Recovery (%)	Recovery	Limits (%)	
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High	
EA010P: Conductivity by PC Titrator (QCLot: 136	67700)								
EA010-P: Electrical Conductivity @ 25°C		1	μS/cm	<1	2000 µS/cm	106	95	113	
EA015: Total Dissolved Solids dried at 180 ± 5 °C	(QCLot: 1370909)								
EA015H: Total Dissolved Solids @180°C		10	mg/L	<10	2000 mg/L	102	87	109	
_				<10	293 mg/L	100	66	126	
A075: Redox Potential (QCLot: 1369498)									
A075: Redox Potential			mV		234 mV	97.9	96	106	
					300 mV	99.3	97	105	
					86 mV	107	97	115	
D037P: Alkalinity by PC Titrator (QCLot: 13677	03)								
ED037-P: Total Alkalinity as CaCO3			mg/L		200 mg/L	101	81	111	
					50 mg/L	115	70	130	
ED040F: Dissolved Major Anions (QCLot: 13672	51)								
ED040F: Silicon	7440-21-3	0.05	mg/L	<0.05	5 mg/L	119	91	123	
ED041G: Sulfate (Turbidimetric) as SO4 2- by DA	(QCI of: 1367254)							1	
ED041G: Sulfate as SO4 - Turbidimetric	14808-79-8	1	mg/L	<1	25 mg/L	102	82	122	
ED045G: Chloride by Discrete Analyser (QCLot:	1367253)								
ED045G: Chloride	16887-00-6	1	mg/L	<1	10 mg/L	103	81	127	
				<1	1000 mg/L	116	81	127	
ED093F: Dissolved Major Cations (QCLot: 13740	61)								
D093F: Calcium	7440-70-2	1	mg/L	<1	50 mg/L	90.4	80	114	
D093F: Magnesium	7439-95-4	1	mg/L	<1	50 mg/L	98.3	90	116	
D093F: Sodium	7440-23-5	1	mg/L	<1	50 mg/L	97.9	82	120	
ED093F: Potassium	7440-09-7	1	mg/L	<1	50 mg/L	96.0	85	113	
G020F: Dissolved Metals by ICP-MS (QCLot: 13	74056)		0		U U			1	
EG020B-F: Silver	7440-22-4	0.001	mg/L	<0.001					
G020B-F: Strontium	7440-24-6	0.001	mg/L	< 0.001	0.1 mg/L	104	81	113	
EG020B-F: Titanium	7440-32-6	0.01	mg/L	<0.01	0.1 mg/L	97.0	77	119	
EG020F: Dissolved Metals by ICP-MS (QCLot: 13	74060)		0		Ū				
G020A-F: Aluminium	7429-90-5	0.01	mg/L	<0.01	0.5 mg/L	97.4	80	116	
G020A-F: Arsenic	7440-38-2	0.001	mg/L	<0.001	0.1 mg/L	103	85	114	
EG020A-F: Beryllium	7440-41-7	0.001	mg/L	<0.001	0.1 mg/L	86.8	85	115	
EG020A-F: Barium	7440-39-3	0.001	mg/L	<0.001	0.1 mg/L	103	82	110	
EG020A-F: Cadmium	7440-43-9	0.0001	mg/L	<0.0001	0.1 mg/L	103	84	110	

Sub-Matrix: WATER			Method Blank (MB)		Laboratory Control Spike (LCS) Report			
				Report	Spike	Spike Recovery (%)	Recovery	Limits (%)
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High
EG020F: Dissolved Metals by ICP-MS (QCLot: 137	4060) - continued							
EG020A-F: Chromium	7440-47-3	0.001	mg/L	<0.001	0.1 mg/L	87.0	85	111
EG020A-F: Cobalt	7440-48-4	0.001	mg/L	<0.001	0.1 mg/L	95.7	82	112
EG020A-F: Copper	7440-50-8	0.001	mg/L	<0.001	0.1 mg/L	97.9	81	111
EG020A-F: Lead	7439-92-1	0.001	mg/L	<0.001	0.1 mg/L	94.8	83	111
EG020A-F: Manganese	7439-96-5	0.001	mg/L	<0.001	0.1 mg/L	89.4	82	110
EG020A-F: Molybdenum	7439-98-7	0.001	mg/L	<0.001	0.1 mg/L	99.9	79	113
EG020A-F: Nickel	7440-02-0	0.001	mg/L	<0.001	0.1 mg/L	98.8	82	112
EG020A-F: Selenium	7782-49-2	0.01	mg/L	<0.01	0.1 mg/L	102	85	115
EG020A-F: Vanadium	7440-62-2	0.01	mg/L	<0.01	0.1 mg/L	90.2	83	109
EG020A-F: Zinc	7440-66-6	0.005	mg/L	<0.005	0.1 mg/L	96.8	81	117
EG020A-F: Boron	7440-42-8	0.05	mg/L	<0.05	0.5 mg/L	107	85	115
EG020A-F: Iron	7439-89-6	0.05	mg/L	<0.05	0.5 mg/L	90.6	82	112
EG035F: Dissolved Mercury by FIMS (QCLot: 1374	4057)							
EG035F: Mercury	7439-97-6	0.0001	mg/L	<0.0001	0.01 mg/L	89.1	83	105
EK055G: Ammonia as N by Discrete Analyser (QC	(Lot: 1374484)				_			1
EK055G: Ammonia as N	7664-41-7	0.01	mg/L	<0.01	1 mg/L	105	90	114
		0101		0.01	· …g· =	100		
EK057G: Nitrite as N by Discrete Analyser (QCLo EK057G: Nitrite as N	14797-65-0	0.01	mg/L	<0.01	0.5 mg/L	98.0	82	114
			IIIQ/L	<0.01	0.5 mg/L	90.0	02	114
EK059G: Nitrite plus Nitrate as N (NOx) by Discre						(
EK059G: Nitrite + Nitrate as N		0.01	mg/L	<0.01	0.5 mg/L	105	91	113
EP075(SIM)B: Polynuclear Aromatic Hydrocarbons								
EP075(SIM): Naphthalene	91-20-3	1	μg/L	<1.0	5 µg/L	69.6	50	94
EP075(SIM): Acenaphthylene	208-96-8	1	μg/L	<1.0	5 µg/L	75.5	64	114
EP075(SIM): Acenaphthene	83-32-9	1	μg/L	<1.0	5 µg/L	69.0	62	113
EP075(SIM): Fluorene	86-73-7	1	μg/L	<1.0	5 µg/L	74.6	64	115
EP075(SIM): Phenanthrene	85-01-8	1	μg/L	<1.0	5 µg/L	68.6	63	116
EP075(SIM): Anthracene	120-12-7	1	μg/L	<1.0	5 µg/L	79.0	64	116
EP075(SIM): Fluoranthene	206-44-0	1	μg/L	<1.0	5 µg/L	72.1	64	118
EP075(SIM): Pyrene	129-00-0	1	μg/L	<1.0	5 µg/L	77.9	63	118
EP075(SIM): Benz(a)anthracene	56-55-3	1	μg/L	<1.0	5 µg/L	74.6	64	117
EP075(SIM): Chrysene	218-01-9	1	μg/L	<1.0	5 µg/L	69.7	63	116
EP075(SIM): Benzo(b+j)fluoranthene	205-99-2	1	µg/L	<1.0	5 µg/L	81.3	62	119
	205-82-3							
EP075(SIM): Benzo(k)fluoranthene	207-08-9	1	μg/L	<1.0	5 µg/L	80.5	63	115
EP075(SIM): Benzo(a)pyrene	50-32-8	0.5	μg/L	<0.5	5 µg/L	75.4	63	117
EP075(SIM): Indeno(1.2.3.cd)pyrene	193-39-5	1	μg/L	<1.0	5 µg/L	69.1	60	118
EP075(SIM): Dibenz(a.h)anthracene	53-70-3	1	μg/L	<1.0	5 µg/L	67.1	61	117
EP075(SIM): Benzo(g.h.i)perylene	191-24-2	1	μg/L	<1.0	5 µg/L	68.7	59	118

Sub-Matrix: WATER				Method Blank (MB)		Laboratory Control Spike (LCS) Report				
				Report	Spike	Spike Recovery (%)	Recovery	Limits (%)		
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High		
EP080/071: Total Petroleum Hydrocarbons ((QCLot: 1368248)									
EP071: C10 - C14 Fraction		50	μg/L	<50	2000 µg/L	84.2	76	116		
EP071: C15 - C28 Fraction		100	µg/L	<100	3000 µg/L	91.5	83	109		
EP071: C29 - C36 Fraction		50	µg/L	<50	2000 µg/L	90.3	75	113		
EP080/071: Total Petroleum Hydrocarbons((QCLot: 1368463)									
EP080: C6 - C9 Fraction		20	μg/L	<20	260 µg/L	81.3	75	127		
EP080/071: Total Recoverable Hydrocarbons	s - NEPM 2013 Fractions (QCI	_ot: 1368248)								
EP071: >C10 - C16 Fraction		100	μg/L	<100	2500 μg/L	87.0	76	114		
EP071: >C16 - C34 Fraction		100	μg/L	<100	3500 µg/L	95.8	81	111		
EP071: >C34 - C40 Fraction		100	μg/L	<100	1500 μg/L	94.5	77	119		
EP080/071: Total Recoverable Hydrocarbons	s - NEPM 2013 Fractions (QCI	_ot: 1368463)								
EP080: C6 - C10 Fraction	C6_C10	20	μg/L	<20	310 µg/L	83.3	75	127		
EP080: BTEXN (QCLot: 1368463)										
EP080: Benzene	71-43-2	1	µg/L	<1	10 µg/L	86.5	70	122		
EP080: Toluene	108-88-3	2	μg/L	<2	10 µg/L	92.6	69	123		
EP080: Ethylbenzene	100-41-4	2	μg/L	<2	10 µg/L	93.9	70	120		
EP080: meta- & para-Xylene	108-38-3	2	μg/L	<2	10 µg/L	92.7	69	121		
	106-42-3									
EP080: ortho-Xylene	95-47-6	2	µg/L	<2	10 µg/L	93.7	72	122		
EP080: Naphthalene	91-20-3	5	μg/L	<5	10 µg/L	105	70	120		

Matrix Spike (MS) Report

The quality control term Matrix Spike (MS) refers to an intralaboratory split sample spiked with a representative set of target analytes. The purpose of this QC parameter is to monitor potential matrix effects on analyte recoveries. Static Recovery Limits as per laboratory Data Quality Objectives (DQOs). Ideal recovery ranges stated may be waived in the event of sample matrix interference.

Sub-Matrix: WATER				Ma	atrix Spike (MS) Report		
				Spike	SpikeRecovery(%)	Recovery L	imits (%)
aboratory sample ID.	Client sample ID	Method: Compound	CAS Number	Concentration	MS	Low	High
ED041G: Sulfate (1	urbidimetric) as SO4 2- by DA (QCLot: 1367254)						
ES1801776-020	Anonymous	ED041G: Sulfate as SO4 - Turbidimetric	14808-79-8	10 mg/L	# Not Determined	70	130
D045G: Chloride	by Discrete Analyser (QCLot: 1367253)						
ES1801776-020	Anonymous	ED045G: Chloride	16887-00-6	250 mg/L	118	70	130
G020F: Dissolved	Metals by ICP-MS (QCLot: 1374060)						
ES1801764-004	Anonymous	EG020A-F: Arsenic	7440-38-2	1 mg/L	105	70	130
		EG020A-F: Beryllium	7440-41-7	1 mg/L	125	70	130
		EG020A-F: Barium	7440-39-3	1 mg/L	105	70	130
		EG020A-F: Cadmium	7440-43-9	0.25 mg/L	105	70	130

Sub-Matrix: WATER		Matrix Spike (MS) Report					
				Spike	SpikeRecovery(%)	Recovery L	.imits (%)
aboratory sample ID	Client sample ID	Method: Compound	CAS Number	Concentration	MS	Low	High
EG020F: Dissolve	d Metals by ICP-MS (QCLot: 1374060) - con	tinued					
ES1801764-004	Anonymous	EG020A-F: Chromium	7440-47-3	1 mg/L	112	70	130
		EG020A-F: Cobalt	7440-48-4	1 mg/L	123	70	130
		EG020A-F: Copper	7440-50-8	1 mg/L	113	70	130
		EG020A-F: Lead	7439-92-1	1 mg/L	97.5	70	130
		EG020A-F: Manganese	7439-96-5	1 mg/L	122	70	130
		EG020A-F: Nickel	7440-02-0	1 mg/L	102	70	130
		EG020A-F: Vanadium	7440-62-2	1 mg/L	116	70	130
		EG020A-F: Zinc	7440-66-6	1 mg/L	98.5	70	130
EG035F: Dissolve	d Mercury by FIMS (QCLot: 1374057)						
ES1801653-002	Anonymous	EG035F: Mercury	7439-97-6	0.01 mg/L	107	70	130
EK055G: Ammonia	a as N by Discrete Analyser (QCLot: 137448	4)					
ES1801653-001	Anonymous	EK055G: Ammonia as N	7664-41-7	1 mg/L	92.9	70	130
EK057G: Nitrite a	s N by Discrete Analyser (QCLot: 1367252)						
ES1801776-020	Anonymous	EK057G: Nitrite as N	14797-65-0	0.5 mg/L	# Not	70	130
				-	Determined		
EK059G: Nitrite p	lus Nitrate as N (NOx) by Discrete Analyser	(QCLot: 1374485)					
ES1801653-001	Anonymous	EK059G: Nitrite + Nitrate as N		0.5 mg/L	107	70	130
EP080/071: Total F	Petroleum Hydrocarbons (QCLot: 1368463)						
EP1801189-001	Anonymous	EP080: C6 - C9 Fraction		325 µg/L	114	70	130
EP080/071: Total F	Recoverable Hydrocarbons - NEPM 2013 Fra				I		
EP1801189-001	Anonymous	EP080: C6 - C10 Fraction	C6 C10	375 µg/L	109	70	130
EP080: BTEXN (Q			_	10	1		1
EP1801189-001	Anonymous	EP080: Benzene	71-43-2	25 µg/L	111	70	130
		EP080: Toluene	108-88-3	25 µg/L	98.7	70	130
		EP080: Ethylbenzene	100-41-4	25 µg/L	104	70	130
		EP080: meta- & para-Xylene	108-38-3	25 µg/L	106	70	130
			106-42-3				
		EP080: ortho-Xylene	95-47-6	25 µg/L	102	70	130
		EP080: Naphthalene	91-20-3	25 µg/L	102	70	130

QA/QC Compliance Assessment to assist with Quality Review						
Work Order	: ES1801825	Page	: 1 of 9			
Client	: HY-TEC INDUSTRIES PTY LTD	Laboratory	: Environmental Division Sydney			
Contact	: MARK TAYLOR	Telephone	: +61-2-8784 8555			
Project	: Hytec Austen Quarry Baseline Groundwater Monitoring	Date Samples Received	: 12-Jan-2018			
lite	:	Issue Date	: 22-Jan-2018			
ampler	: MARK TAYLOR	No. of samples received	: 5			
Order number	:	No. of samples analysed	: 5			

This report is automatically generated by the ALS LIMS through interpretation of the ALS Quality Control Report and several Quality Assurance parameters measured by ALS. This automated reporting highlights any non-conformances, facilitates faster and more accurate data validation and is designed to assist internal expert and external Auditor review. Many components of this report contribute to the overall DQO assessment and reporting for guideline compliance.

Brief method summaries and references are also provided to assist in traceability.

Summary of Outliers

Outliers : Quality Control Samples

This report highlights outliers flagged in the Quality Control (QC) Report.

- NO Method Blank value outliers occur.
- <u>NO</u> Duplicate outliers occur.
- <u>NO</u> Laboratory Control outliers occur.
- Matrix Spike outliers exist please see following pages for full details.
- For all regular sample matrices, NO surrogate recovery outliers occur.

Outliers : Analysis Holding Time Compliance

• Analysis Holding Time Outliers exist - please see following pages for full details.

Outliers : Frequency of Quality Control Samples

• Quality Control Sample Frequency Outliers exist - please see following pages for full details.

Outliers : Quality Control Samples

Duplicates, Method Blanks, Laboratory Control Samples and Matrix Spikes

Matrix: WATER

Compound Group Name	Laboratory Sample ID	Client Sample ID	Analyte	CAS Number	Data	Limits	Comment
Matrix Spike (MS) Recoveries							
ED041G: Sulfate (Turbidimetric) as SO4 2- by DA	ES1801776020	Anonymous	Sulfate as SO4 -	14808-79-8	Not		MS recovery not determined,
			Turbidimetric		Determined		background level greater than or
							equal to 4x spike level.
EK057G: Nitrite as N by Discrete Analyser	ES1801776020	Anonymous	Nitrite as N	14797-65-0	Not		MS recovery not determined,
					Determined		background level greater than or
							equal to 4x spike level.

Outliers : Analysis Holding Time Compliance

Matrix: WATER

Method		E	xtraction / Preparation			Analysis	
Container / Client Sample ID(s)		Date extracted	Due for extraction	Days	Date analysed	Due for analysis	Days
				overdue			overdue
EA005P: pH by PC Titrator							
Clear Plastic Bottle - Natural							
MB01S,	MB01D,				13-Jan-2018	10-Jan-2018	3
MB02,	PIT,						
DUPA							
EA075: Redox Potential							
Clear Plastic Bottle - Natural							
MB01S,	MB01D,				15-Jan-2018	10-Jan-2018	5
MB02,	PIT,						
DUPA							

Outliers : Frequency of Quality Control Samples

Matrix: WATER					
Quality Control Sample Type	Co	ount	Rate	e (%)	Quality Control Specification
Method	QC	Regular	Actual	Expected	
Laboratory Duplicates (DUP)					
PAH/Phenols (GC/MS - SIM)	0	6	0.00	10.00	NEPM 2013 B3 & ALS QC Standard
TRH - Semivolatile Fraction	0	18	0.00	10.00	NEPM 2013 B3 & ALS QC Standard
Matrix Spikes (MS)					
PAH/Phenols (GC/MS - SIM)	0	6	0.00	5.00	NEPM 2013 B3 & ALS QC Standard
TRH - Semivolatile Fraction	0	18	0.00	5.00	NEPM 2013 B3 & ALS QC Standard

Analysis Holding Time Compliance

If samples are identified below as having been analysed or extracted outside of recommended holding times, this should be taken into consideration when interpreting results.

This report summarizes extraction / preparation and analysis times and compares each with ALS recommended holding times (referencing USEPA SW 846, APHA, AS and NEPM) based on the sample container provided. Dates reported represent first date of extraction or analysis and preclude subsequent dilutions and reruns. A listing of breaches (if any) is provided herein.

Holding time for leachate methods (e.g. TCLP) vary according to the analytes reported. Assessment compares the leach date with the shortest analyte holding time for the equivalent soil method. These are: organics 14 days, mercury 28 days & other metals 180 days. A recorded breach does not guarantee a breach for all non-volatile parameters.

Holding times for <u>VOC in soils</u> vary according to analytes of interest. Vinyl Chloride and Styrene holding time is 7 days; others 14 days. A recorded breach does not guarantee a breach for all VOC analytes and should be verified in case the reported breach is a false positive <u>or</u> Vinyl Chloride and Styrene are not key analytes of interest/concern.

Matrix: WATER					Evaluation	n: × = Holding time	breach ; ✓ = With	n holding time
Method		Sample Date	Extraction / Preparation				Analysis	
Container / Client Sample ID(s)			Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EA005P: pH by PC Titrator								
Clear Plastic Bottle - Natural (EA005-P) MB01S, MB02, DUPA	MB01D, PIT,	10-Jan-2018				13-Jan-2018	10-Jan-2018	×
EA010P: Conductivity by PC Titrator								
Clear Plastic Bottle - Natural (EA010-P) MB01S, MB02, DUPA	MB01D, PIT,	10-Jan-2018				13-Jan-2018	07-Feb-2018	~
EA015: Total Dissolved Solids dried at 180 ± 5 °	с							
Clear Plastic Bottle - Natural (EA015H) MB01S, MB02, DUPA	MB01D, PIT,	10-Jan-2018				16-Jan-2018	17-Jan-2018	~
EA075: Redox Potential								
Clear Plastic Bottle - Natural (EA075) MB01S, MB02, DUPA	MB01D, PIT,	10-Jan-2018				15-Jan-2018	10-Jan-2018	×
ED037P: Alkalinity by PC Titrator						1		
Clear Plastic Bottle - Natural (ED037-P) MB01S, MB02, DUPA	MB01D, PIT,	10-Jan-2018				13-Jan-2018	24-Jan-2018	~
ED040F: Dissolved Major Anions								
Clear Plastic Bottle - Natural (ED040F) MB01S, MB02, DUPA	MB01D, PIT,	10-Jan-2018				15-Jan-2018	07-Feb-2018	~

Page	: 4 of 9
Work Order	: ES1801825
Client	: HY-TEC INDUSTRIES PTY LTD
Project	: Hytec Austen Quarry Baseline Groundwater Monitoring

Matrix: WATER					Evaluation	n: × = Holding time	breach ; 🗸 = With	in holding tin
Method		Sample Date	Ex	traction / Preparation		Analysis		
Container / Client Sample ID(s)			Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
ED041G: Sulfate (Turbidimetric) as SO4 2- by DA							·	
Clear Plastic Bottle - Natural (ED041G)								
MB01S,	MB01D,	10-Jan-2018				12-Jan-2018	07-Feb-2018	✓
MB02,	PIT,							
DUPA								
ED045G: Chloride by Discrete Analyser								
Clear Plastic Bottle - Natural (ED045G)								
MB01S,	MB01D,	10-Jan-2018				12-Jan-2018	07-Feb-2018	 ✓
MB02,	PIT,							
DUPA								
ED093F: Dissolved Major Cations								
Clear Plastic Bottle - Natural (ED093F)								
MB01D,	MB02	10-Jan-2018				17-Jan-2018	17-Jan-2018	✓
Clear Plastic Bottle - Nitric Acid; Filtered (ED093F)								
MB01S,	PIT,	10-Jan-2018				17-Jan-2018	07-Feb-2018	 ✓
DUPA								
EG020F: Dissolved Metals by ICP-MS								
Clear Plastic Bottle - Natural (EG020B-F)								
MB01D,	MB02	10-Jan-2018				17-Jan-2018	09-Jul-2018	✓
Clear Plastic Bottle - Nitric Acid; Filtered (EG020B-F)								
MB01S,	PIT,	10-Jan-2018				17-Jan-2018	09-Jul-2018	 ✓
DUPA								
EG035F: Dissolved Mercury by FIMS								
Clear Plastic Bottle - Natural (EG035F)								
MB01D,	MB02	10-Jan-2018				17-Jan-2018	07-Feb-2018	✓
Clear Plastic Bottle - Nitric Acid; Filtered (EG035F)								
MB01S,	PIT,	10-Jan-2018				17-Jan-2018	07-Feb-2018	 ✓
DUPA								
EK055G: Ammonia as N by Discrete Analyser								
Clear Plastic Bottle - Sulfuric Acid (EK055G)								
MB01S,	MB01D,	10-Jan-2018				17-Jan-2018	07-Feb-2018	✓
MB02,	PIT,							
DUPA								
EK057G: Nitrite as N by Discrete Analyser								
Clear Plastic Bottle - Natural (EK057G)								
MB01S,	MB01D,	10-Jan-2018				12-Jan-2018	12-Jan-2018	✓
MB02,	PIT,							
DUPA								

Page	5 of 9
Work Order	: ES1801825
Client	: HY-TEC INDUSTRIES PTY LTD
Project	: Hytec Austen Quarry Baseline Groundwater Monitoring

Matrix: WATER					Evaluation	: × = Holding time	breach ; ✓ = Withi	n holding time.
Method		Sample Date	Extraction / Preparation			Analysis		
Container / Client Sample ID(s)			Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EK059G: Nitrite plus Nitrate as N (NOx) by Discrete A	nalyser							
Clear Plastic Bottle - Sulfuric Acid (EK059G)								
MB01S,	MB01D,	10-Jan-2018				17-Jan-2018	07-Feb-2018	\checkmark
MB02,	PIT,							
DUPA								
EP075(SIM)B: Polynuclear Aromatic Hydrocarbons								
Amber Glass Bottle - Unpreserved (EP075(SIM))								
PIT,	DUPA	10-Jan-2018	15-Jan-2018	17-Jan-2018	 ✓ 	18-Jan-2018	24-Feb-2018	\checkmark
EP080/071: Total Petroleum Hydrocarbons								
Amber Glass Bottle - Unpreserved (EP071)								
PIT,	DUPA	10-Jan-2018	15-Jan-2018	17-Jan-2018	✓	18-Jan-2018	24-Feb-2018	\checkmark
Clear glass VOC vial - HCl (EP080)								
PIT,	DUPA	10-Jan-2018	15-Jan-2018	24-Jan-2018	1	15-Jan-2018	24-Jan-2018	\checkmark
EP080/071: Total Recoverable Hydrocarbons - NEPM 2	013 Fractions							
Amber Glass Bottle - Unpreserved (EP071)								
PIT,	DUPA	10-Jan-2018	15-Jan-2018	17-Jan-2018	1	18-Jan-2018	24-Feb-2018	\checkmark
Clear glass VOC vial - HCl (EP080)								
PIT,	DUPA	10-Jan-2018	15-Jan-2018	24-Jan-2018	1	15-Jan-2018	24-Jan-2018	✓
EP080: BTEXN								
Clear glass VOC vial - HCl (EP080)								
PIT,	DUPA	10-Jan-2018	15-Jan-2018	24-Jan-2018	~	15-Jan-2018	24-Jan-2018	✓

Quality Control Parameter Frequency Compliance

The following report summarises the frequency of laboratory QC samples analysed within the analytical lot(s) in which the submitted sample(s) was(were) processed. Actual rate should be greater than or equal to the expected rate. A listing of breaches is provided in the Summary of Outliers.

Quality Control Sample Type			Count Rate (%)				not within specification ; \checkmark = Quality Control frequency within specific Quality Control Specification		
Analytical Methods	Method	ງ ວດ	Reaular	Actual	Expected	Evaluation			
Laboratory Duplicates (DUP)		00	(Could)	Actual	LADCOLCU				
Alkalinity by PC Titrator	ED037-P	2	20	10.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard		
Ammonia as N by Discrete analyser	EK055G	2	20	10.00	10.00		NEPM 2013 B3 & ALS QC Standard		
Chloride by Discrete Analyser	ED045G	2	20	10.00	10.00		NEPM 2013 B3 & ALS QC Standard		
Conductivity by PC Titrator	EA010-P	2	19	10.53	10.00		NEPM 2013 B3 & ALS QC Standard		
Dissolved Mercury by FIMS	EG035F	2	14	14.29	10.00		NEPM 2013 B3 & ALS QC Standard		
Dissolved Metals by ICP-MS - Suite A	EG020A-F	2	20	10.00	10.00		NEPM 2013 B3 & ALS QC Standard		
Dissolved Metals by ICP-MS - Suite B	EG020B-F	2	12	16.67	10.00		NEPM 2013 B3 & ALS QC Standard		
Major Anions - Dissolved	ED040F	2	20	10.00	10.00		NEPM 2013 B3 & ALS QC Standard		
Major Cations - Dissolved	ED093F	2	15	13.33	10.00		NEPM 2013 B3 & ALS QC Standard		
Nitrite and Nitrate as N (NOx) by Discrete Analyser	EK059G	2	18	11.11	10.00		NEPM 2013 B3 & ALS QC Standard		
Nitrite as N by Discrete Analyser	EK057G	2	20	10.00	10.00		NEPM 2013 B3 & ALS QC Standard		
PAH/Phenols (GC/MS - SIM)	EP075(SIM)	0	6	0.00	10.00	*	NEPM 2013 B3 & ALS QC Standard		
pH by PC Titrator	EA005-P	2	20	10.00	10.00		NEPM 2013 B3 & ALS QC Standard		
Redox Potential	EA075	1	5	20.00	10.00		NEPM 2013 B3 & ALS QC Standard		
Sulfate (Turbidimetric) as SO4 2- by Discrete Analyser	ED041G	2	19	10.53	10.00		NEPM 2013 B3 & ALS QC Standard		
Total Dissolved Solids (High Level)	EA015H	2	14	14.29	10.00	1	NEPM 2013 B3 & ALS QC Standard		
TRH - Semivolatile Fraction	EP071	0	18	0.00	10.00	*	NEPM 2013 B3 & ALS QC Standard		
TRH Volatiles/BTEX	EP080	2	17	11.76	10.00		NEPM 2013 B3 & ALS QC Standard		
Laboratory Control Samples (LCS)									
Alkalinity by PC Titrator	ED037-P	2	20	10.00	10.00	1	NEPM 2013 B3 & ALS QC Standard		
Ammonia as N by Discrete analyser	EK055G	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard		
Chloride by Discrete Analyser	ED045G	2	20	10.00	10.00	1	NEPM 2013 B3 & ALS QC Standard		
Conductivity by PC Titrator	EA010-P	1	19	5.26	5.00	1	NEPM 2013 B3 & ALS QC Standard		
Dissolved Mercury by FIMS	EG035F	1	14	7.14	5.00	✓	NEPM 2013 B3 & ALS QC Standard		
Dissolved Metals by ICP-MS - Suite A	EG020A-F	1	20	5.00	5.00	~	NEPM 2013 B3 & ALS QC Standard		
Dissolved Metals by ICP-MS - Suite B	EG020B-F	1	12	8.33	5.00	✓	NEPM 2013 B3 & ALS QC Standard		
Major Anions - Dissolved	ED040F	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard		
Major Cations - Dissolved	ED093F	1	15	6.67	5.00	✓	NEPM 2013 B3 & ALS QC Standard		
Nitrite and Nitrate as N (NOx) by Discrete Analyser	EK059G	1	18	5.56	5.00	✓	NEPM 2013 B3 & ALS QC Standard		
Nitrite as N by Discrete Analyser	EK057G	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard		
PAH/Phenols (GC/MS - SIM)	EP075(SIM)	1	6	16.67	5.00	✓	NEPM 2013 B3 & ALS QC Standard		
Redox Potential	EA075	3	5	60.00	15.00	✓	NEPM 2013 B3 & ALS QC Standard		
Sulfate (Turbidimetric) as SO4 2- by Discrete Analyser	ED041G	1	19	5.26	5.00	✓	NEPM 2013 B3 & ALS QC Standard		
Total Dissolved Solids (High Level)	EA015H	2	14	14.29	10.00	✓	NEPM 2013 B3 & ALS QC Standard		
TRH - Semivolatile Fraction	EP071	1	18	5.56	5.00	✓	NEPM 2013 B3 & ALS QC Standard		
TRH Volatiles/BTEX	EP080	1	17	5.88	5.00	✓	NEPM 2013 B3 & ALS QC Standard		

Page	: 7 of 9
Work Order	: ES1801825
Client	: HY-TEC INDUSTRIES PTY LTD
Project	: Hytec Austen Quarry Baseline Groundwater Monitoring

Matrix: WATER				Evaluatio	n: × = Quality Co	ntrol frequency	not within specification ; ✓ = Quality Control frequency within specification
Quality Control Sample Type		С	ount		Rate (%)		Quality Control Specification
Analytical Methods	Method	00	Reaular	Actual	Expected	Evaluation	
Method Blanks (MB)							
Ammonia as N by Discrete analyser	EK055G	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Chloride by Discrete Analyser	ED045G	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Conductivity by PC Titrator	EA010-P	1	19	5.26	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Dissolved Mercury by FIMS	EG035F	1	14	7.14	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Dissolved Metals by ICP-MS - Suite A	EG020A-F	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Dissolved Metals by ICP-MS - Suite B	EG020B-F	1	12	8.33	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Major Anions - Dissolved	ED040F	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Major Cations - Dissolved	ED093F	1	15	6.67	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Nitrite and Nitrate as N (NOx) by Discrete Analyser	EK059G	1	18	5.56	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Nitrite as N by Discrete Analyser	EK057G	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
PAH/Phenols (GC/MS - SIM)	EP075(SIM)	1	6	16.67	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Sulfate (Turbidimetric) as SO4 2- by Discrete Analyser	ED041G	1	19	5.26	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Dissolved Solids (High Level)	EA015H	1	14	7.14	5.00	✓	NEPM 2013 B3 & ALS QC Standard
TRH - Semivolatile Fraction	EP071	1	18	5.56	5.00	✓	NEPM 2013 B3 & ALS QC Standard
TRH Volatiles/BTEX	EP080	1	17	5.88	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Matrix Spikes (MS)							
Ammonia as N by Discrete analyser	EK055G	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Chloride by Discrete Analyser	ED045G	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Dissolved Mercury by FIMS	EG035F	1	14	7.14	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Dissolved Metals by ICP-MS - Suite A	EG020A-F	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Nitrite and Nitrate as N (NOx) by Discrete Analyser	EK059G	1	18	5.56	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Nitrite as N by Discrete Analyser	EK057G	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
PAH/Phenols (GC/MS - SIM)	EP075(SIM)	0	6	0.00	5.00	x	NEPM 2013 B3 & ALS QC Standard
Sulfate (Turbidimetric) as SO4 2- by Discrete Analyser	ED041G	1	19	5.26	5.00	✓	NEPM 2013 B3 & ALS QC Standard
TRH - Semivolatile Fraction	EP071	0	18	0.00	5.00	×	NEPM 2013 B3 & ALS QC Standard
TRH Volatiles/BTEX	EP080	1	17	5.88	5.00	✓	NEPM 2013 B3 & ALS QC Standard

Brief Method Summaries

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the US EPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request. The following report provides brief descriptions of the analytical procedures employed for results reported in the Certificate of Analysis. Sources from which ALS methods have been developed are provided within the Method Descriptions.

Analytical Methods	Method	Matrix	Method Descriptions
pH by PC Titrator	EA005-P	WATER	In house: Referenced to APHA 4500 H+ B. This procedure determines pH of water samples by automated ISE.
			This method is compliant with NEPM (2013) Schedule B(3)
Conductivity by PC Titrator	EA010-P	WATER	In house: Referenced to APHA 2510 B. This procedure determines conductivity by automated ISE. This method is compliant with NEPM (2013) Schedule B(3)
Total Dissolved Solids (High Level)	EA015H	WATER	In house: Referenced to APHA 2540C. A gravimetric procedure that determines the amount of `filterable` residue in an aqueous sample. A well-mixed sample is filtered through a glass fibre filter (1.2um). The filtrate is evaporated to dryness and dried to constant weight at 180+/-5C. This method is compliant with NEPM (2013) Schedule B(3)
Redox Potential	EA075	WATER	In house: Ion selective electrode
Alkalinity by PC Titrator	ED037-P	WATER	In house: Referenced to APHA 2320 B This procedure determines alkalinity by automated measurement (e.g. PC Titrate) using pH 4.5 for indicating the total alkalinity end-point. This method is compliant with NEPM (2013) Schedule B(3)
Major Anions - Dissolved	ED040F	WATER	In house: Referenced to APHA 3120. The 0.45µm filtered samples are determined by ICP/AES for Sulfur and/or Silcon content and reported as Sulfate and/or Silica after conversion by gravimetric factor.
Sulfate (Turbidimetric) as SO4 2- by Discrete Analyser	ED041G	WATER	In house: Referenced to APHA 4500-SO4. Dissolved sulfate is determined in a 0.45um filtered sample. Sulfate ions are converted to a barium sulfate suspension in an acetic acid medium with barium chloride. Light absorbance of the BaSO4 suspension is measured by a photometer and the SO4-2 concentration is determined by comparison of the reading with a standard curve. This method is compliant with NEPM (2013) Schedule B(3)
Chloride by Discrete Analyser	ED045G	WATER	In house: Referenced to APHA 4500 CI - G.The thiocyanate ion is liberated from mercuric thiocyanate through sequestration of mercury by the chloride ion to form non-ionised mercuric chloride.in the presence of ferric ions the librated thiocynate forms highly-coloured ferric thiocynate which is measured at 480 nm APHA 21st edition seal method 2 017-1-L april 2003
Major Cations - Dissolved	ED093F	WATER	In house: Referenced to APHA 3120 and 3125; USEPA SW 846 - 6010 and 6020; Cations are determined by either ICP-AES or ICP-MS techniques. This method is compliant with NEPM (2013) Schedule B(3)
			Sodium Adsorption Ratio is calculated from Ca, Mg and Na which determined by ALS in house method QWI-EN/ED093F. This method is compliant with NEPM (2013) Schedule B(3)
			Hardness parameters are calculated based on APHA 2340 B. This method is compliant with NEPM (2013) Schedule B(3)
Dissolved Metals by ICP-MS - Suite A	EG020A-F	WATER	In house: Referenced to APHA 3125; USEPA SW846 - 6020, ALS QWI-EN/EG020. Samples are 0.45µm filtered prior to analysis. The ICPMS technique utilizes a highly efficient argon plasma to ionize selected elements. Ions are then passed into a high vacuum mass spectrometer, which separates the analytes based on their distinct mass to charge ratios prior to their measurement by a discrete dynode ion detector.

Analytical Methods	Method	Matrix	Method Descriptions
Dissolved Metals by ICP-MS - Suite B	EG020B-F	WATER	In house: Referenced to APHA 3125; USEPA SW846 - 6020, ALS QWI-EN/EG020. Samples are 0.45µm filtered prior to analysis. The ICPMS technique utilizes a highly efficient argon plasma to ionize selected elements. Ions are then passed into a high vacuum mass spectrometer, which separates the analytes based on their distinct mass to charge ratios prior to their measurement by a discrete dynode ion detector.
Dissolved Mercury by FIMS	EG035F	WATER	In house: Referenced to AS 3550, APHA 3112 Hg - B (Flow-injection (SnCl2)(Cold Vapour generation) AAS) Samples are 0.45µm filtered prior to analysis. FIM-AAS is an automated flameless atomic absorption technique. A bromate/bromide reagent is used to oxidise any organic mercury compounds in the filtered sample. The ionic mercury is reduced online to atomic mercury vapour by SnCl2 which is then purged into a heated quartz cell. Quantification is by comparing absorbance against a calibration curve. This method is compliant with NEPM (2013) Schedule B(3)
Ammonia as N by Discrete analyser	EK055G	WATER	In house: Referenced to APHA 4500-NH3 G Ammonia is determined by direct colorimetry by Discrete Analyser. This method is compliant with NEPM (2013) Schedule B(3)
Nitrite as N by Discrete Analyser	EK057G	WATER	In house: Referenced to APHA 4500-NO2- B. Nitrite is determined by direct colourimetry by Discrete Analyser. This method is compliant with NEPM (2013) Schedule B(3)
Nitrate as N by Discrete Analyser	EK058G	WATER	In house: Referenced to APHA 4500-NO3- F. Nitrate is reduced to nitrite by way of a chemical reduction followed by quantification by Discrete Analyser. Nitrite is determined separately by direct colourimetry and result for Nitrate calculated as the difference between the two results. This method is compliant with NEPM (2013) Schedule B(3)
Nitrite and Nitrate as N (NOx) by Discrete Analyser	EK059G	WATER	In house: Referenced to APHA 4500-NO3- F. Combined oxidised Nitrogen (NO2+NO3) is determined by Chemical Reduction and direct colourimetry by Discrete Analyser. This method is compliant with NEPM (2013) Schedule B(3)
lonic Balance by PCT DA and Turbi SO4 DA	EN055 - PG	WATER	In house: Referenced to APHA 1030F. This method is compliant with NEPM (2013) Schedule B(3)
TRH - Semivolatile Fraction	EP071	WATER	In house: Referenced to USEPA SW 846 - 8015A The sample extract is analysed by Capillary GC/FID and quantification is by comparison against an established 5 point calibration curve of n-Alkane standards. This method is compliant with the QC requirements of NEPM (2013) Schedule B(3)
PAH/Phenols (GC/MS - SIM)	EP075(SIM)	WATER	In house: Referenced to USEPA SW 846 - 8270D Sample extracts are analysed by Capillary GC/MS in SIM Mode and quantification is by comparison against an established 5 point calibration curve. This method is compliant with NEPM (2013) Schedule B(3)
TRH Volatiles/BTEX	EP080	WATER	In house: Referenced to USEPA SW 846 - 8260B Water samples are directly purged prior to analysis by Capillary GC/MS and quantification is by comparison against an established 5 point calibration curve. Alternatively, a sample is equilibrated in a headspace vial and a portion of the headspace determined by GCMS analysis. This method is compliant with the QC requirements of NEPM (2013) Schedule B(3)
Preparation Methods	Method	Matrix	Method Descriptions
Separatory Funnel Extraction of Liquids	ORG14	WATER	In house: Referenced to USEPA SW 846 - 3510B 100 mL to 1L of sample is transferred to a separatory funnel and serially extracted three times using 60mL DCM for each extract. The resultant extracts are combined, dehydrated and concentrated for analysis. This method is compliant with NEPM (2013) Schedule B(3) . ALS default excludes sediment which may be resident in the container.

SAMPLE RECEIPT NOTIFICATION (SRN)

Work Order	ES1801825			
Client Contact Address	: HY-TEC INDUSTRIES PTY LTD : MARK TAYLOR : 664 OLD GYMPIE RD NARANGBA QLD, AUSTRALIA 4504	Laboratory Contact Address	: Customer	ental Division Sydney Services ES Voodpark Road Smithfield tralia 2164
E-mail Telephone Facsimile	: mark.taylor@hy-tec.com.au : :	E-mail Telephone Facsimile	: ALSEnviro : +61-2-878 : +61-2-878	
Project	: Hytec Austen Quarry Baseline Groundwater Monitoring	Page	: 1 of 3	
Order number	:	Quote number	: EB2017H	YTIND0001 (EN/222/17)
C-O-C number	:	QC Level	: NEPM 20 ²	13 B3 & ALS QC Standard
Site	:			
Sampler	: MARK TAYLOR			
Dates				
Date Samples Receive	d : 12-Jan-2018 08:30	Issue Date		: 12-Jan-2018
Client Requested Due Date	: 22-Jan-2018	Scheduled Reportin	ng Date	22-Jan-2018
Delivery Details	5			
Mode of Delivery	: Undefined	Security Seal		: Intact.
No. of coolers/boxes	: 1	Temperature		: 14.4' C - Ice Bricks present
Receipt Detail	:	No. of samples rec	eived / analysed	: 5/5

General Comments

- This report contains the following information:
 - Sample Container(s)/Preservation Non-Compliances
 - Summary of Sample(s) and Requested Analysis
 - Proactive Holding Time Report
 - Requested Deliverables
- Due to appropriately preserved container not being supplied for dissolved metals for samples #2, #3, the analysis will be conduct from the natural bottle provided.
- Temperature has been requested on the COC, however this is a field test and therefore cannot be analysed in the laboratory.
- Please refer to the Proactive Holding Time Report table below which summarises breaches of recommended holding times that have occurred prior to samples/instructions being received at the laboratory. The absence of this summary table indicates that all samples have been received within the recommended holding times for the analysis requested.
- Sample(s) requiring volatile organic compound analysis received in airtight containers (ZHE).
- Please direct any queries you have regarding this work order to the above ALS laboratory contact.
- Analytical work for this work order will be conducted at ALS Sydney.
- Sample Disposal Aqueous (3 weeks), Solid (2 months) from receipt of samples.

Sample Container(s)/Preservation Non-Compliances

All comparisons are made against pretreatment/preservation AS, APHA, USEPA standards.

Method Client sample ID	Sample Container Received	Preferred Sample Container for Analysis
Dissolved Mercury by FIMS : EC	3035F	
MB01D	- Clear Plastic Bottle - Natural	- Clear Plastic Bottle - Nitric Acid; Filtered
MB02	- Clear Plastic Bottle - Natural	- Clear Plastic Bottle - Nitric Acid; Filtered
Dissolved Metals by ICP-MS - S	uite A:EG020A-F	
MB01D	- Clear Plastic Bottle - Natural	- Clear Plastic Bottle - Nitric Acid; Filtered
MB02	- Clear Plastic Bottle - Natural	- Clear Plastic Bottle - Nitric Acid; Filtered
Dissolved Metals by ICP-MS - S	uite B : EG020B-F	
MB01D	- Clear Plastic Bottle - Natural	- Clear Plastic Bottle - Nitric Acid; Filtered
MB02	- Clear Plastic Bottle - Natural	- Clear Plastic Bottle - Nitric Acid; Filtered

Summary of Sample(s) and Requested Analysis

 	process necessa tasks. Packages as the determin tasks, that are inclu If no sampling default 00:00 on	ry for the executi may contain ad ation of moisture uded in the package. time is provided, the date of samplin sampling date wi	be part of a laboratory on of client requested ditional analyses, such content and preparation the sampling time will g. If no sampling date II be assumed by the ckets without a time <i>Client sample ID</i> MB01S	WATER - EA010P Conductivity (PC)	MATER - ED040F Dissolved Major Anions	MATER - EG020F Dissolved Metals by ICPMS	VATER - EG035F Dissolved Mercury by FIMS	WATER - EK055G Ammonia as N By Discrete Analyser	WATER - NT-01 & 02 Ca, Mg, Na, K, Cl, SO4, Alkalinity	► WATER - NT-04 Nitrite and Nitrate
				· · · ·						
	ES1801825-002	10-Jan-2018 00:00	MB01D	✓ ✓	 ✓ ✓ 	✓ ✓	✓ ✓	✓ ✓	✓ ✓	✓ ✓
	ES1801825-003	10-Jan-2018 00:00	MB02	✓ ✓	√	✓ ✓	√	✓ ✓	✓ ✓	 ✓ ✓
	ES1801825-004	10-Jan-2018 00:00	PIT	 ✓ ✓ 	 ✓ 	 ✓ 	 ✓ ✓ 	✓	✓	 ✓
	ES1801825-005	10-Jan-2018 00:00	DUPA	1	✓	✓	✓	✓	✓	✓
	Matrix: WATER Laboratory sample ID	Client sampling date / time	Client sample ID	WATER - EA005P pH (PC)	WATER - EA015H Total Dissolved Solids - High Level	WATER - EA075 Redox Potential	WATER - W-07 TRH/BTEXN/PAH			
ſ	ES1801825-001	10-Jan-2018 00:00	MB01S	<u>> ∩</u> ✓	≤ ⊢	<u>≤ ~</u>	<u>s ⊢</u>			
	ES1801825-001	10-Jan-2018 00:00	MB01D	• √	• •	• •				
	ES1801825-002	10-Jan-2018 00:00	MB01D MB02	• •	· √	• √				
	ES1801825-003	10-Jan-2018 00:00	PIT	• √	▼ √	• √	1			
				▼ √	▼ √	•	•			
	ES1801825-005	10-Jan-2018 00:00	DUPA	V 1	V 1	v	V 1			

Proactive Holding Time Report

The following table summarises breaches of recommended holding times that have occurred prior to samples/instructions being received at the laboratory.

Matrix: WATER				Evaluation: × = He	olding time br	reach ; ✓ = Within I	nolding time.
Method		Due for	Due for	Samples R	eceived	Instructions R	eceived
Client Sample ID(s)	Container	extraction	analysis	Date	Evaluation	Date	Evaluation

 Issue Date
 : 12-Jan-2018

 Page
 : 3 of 3

 Work Order
 : ES1801825 Amendment 0

 Client
 : HY-TEC INDUSTRIES PTY LTD

EA005-P: pH	by PC Titrator				
DUPA	Clear Plastic Bottle - Natural	 10-Jan-2018	12-Jan-2018	×	
MB01D	Clear Plastic Bottle - Natural	 10-Jan-2018	12-Jan-2018	×	
MB01S	Clear Plastic Bottle - Natural	 10-Jan-2018	12-Jan-2018	×	
MB02	Clear Plastic Bottle - Natural	 10-Jan-2018	12-Jan-2018	×	
PIT	Clear Plastic Bottle - Natural	 10-Jan-2018	12-Jan-2018	x	
EA075: Redo	x Potential	-	-		-
DUPA	Clear Plastic Bottle - Natural	 10-Jan-2018	12-Jan-2018	×	
MB01D	Clear Plastic Bottle - Natural	 10-Jan-2018	12-Jan-2018	×	
MB01S	Clear Plastic Bottle - Natural	 10-Jan-2018	12-Jan-2018	×	
MB02	Clear Plastic Bottle - Natural	 10-Jan-2018	12-Jan-2018	×	
PIT	Clear Plastic Bottle - Natural	 10-Jan-2018	12-Jan-2018	×	

Requested Deliverables

MARK TAYLOR

- *AU Certificate of Analysis NATA (COA)
- *AU Interpretive QC Report DEFAULT (Anon QCI Rep) (QCI)
- *AU QC Report DEFAULT (Anon QC Rep) NATA (QC)
- A4 AU Sample Receipt Notification Environmental HT (SRN)

- A4 - AU Tax Invoice (INV)

- Chain of Custody (CoC) (COC)
- EDI Format ENMRG (ENMRG)
- EDI Format XTab (XTAB)

Email Email Email Email Email Email Email Email mark.taylor@hy-tec.com.au mark.taylor@hy-tec.com.au mark.taylor@hy-tec.com.au mark.taylor@hy-tec.com.au mark.taylor@hy-tec.com.au mark.taylor@hy-tec.com.au mark.taylor@hy-tec.com.au

Envirolab Sample ID Signature: Contact person: Mark Taylor Client: Hy-Tec Email: Fax: Phone: Address: Austen Quarry, 391 Jenolan Caves Road, Hartley, NSW Project Mgr: Mark Taylor Print Name: Sampler: Mark Taylor Date & Time: Relinquished by (company): v ¢ Ľ Ł Client Sample ID or information MB01S DUPA MB02 MB01D Pit Sample information Hytec Mob: TM Mark Taylor 11/01/2018 Depth ī , 0428855447 Date sampled 11-Jan-18 10-Jan-18 10-Jan-18 11-Jan-18 10-Jan-18 CHAIN OF CUSTODY - Client Type of sample Water Water Water Water Water Signature: Date & Time: Received by (company): J. Wealy Hy-tec Suite (see Or choose: standard / same day / 1 day / 2 day / 3 day Envirolab Quote No. : PO No.: Client Project Name / Number / Site etc (ie report title): Print Name: Fap comments: Note: Inform lab in advance if urgent turnaround is required - surcharge applies × × × × × table below) Hytec Austen Quarry Baseline Groundwater Monitoring × TRH, BTEX, PAHs × JESSIE 5 81 10 Standard TAT Transported by: Hand delivered / courier White - Lab copy / Blue - Client copy / Pink - Retain in Book Pa 08:30 **Tests Required** N N N -26 19 Contact: E-mail: Temperature Received at: Samples Received: Cool or Ambient (circle one) ALS Lab use only: Phone: 02 87848555 277-289 Smithpark Road, Smithfield, NSW Telephone : + 51-2-8784 8555 Sydney Environmental Division Work Order Reference ES1801825 (if applicable) information about the sample as you can Provide as much Page No: 1 of 1 Comments

Form: 302 - Chain of Custody-Client, Issued 16/03/10, Version 4, Page 1 of 1.

269108152

Analyte Group Analyte	Physical Parameters (measure in field) Dissolved Solids Major Cations Major Anions Heavy Metals (Dissolved)	 FEC, pH, Eh, Temperature Total Dissolved Solids Magnesium Calcium Potassium Sodium Potassium Sulphate Chloride Hydroxide as CaCO₃ Bicarbonate as CaCO₃ Bicarbonate as CaCO₃ Bicarbonate as CaCO₃ Boron Barium Barium Cobalt Copper Iron Lead Marganese Mercury Molybdenum Nickel Selenium Selenium Silicon Silicon Silicon Silicon Silicon Silicon Armenia
Dhusinal Daramatare	Physical Parameters (measure in field)	
EC, pH, Eh,	Dissolved Solids	Total Dissolved Solids
) EC, pH, Eh, Total Dissol		
) EC, pH, Eh, Total Dissolv Magnesium	Major Optione	Calcium
ids Total Dissol Magnesium Calcium		Sodium
ids Total Dissol Magnesium Calcium Sodium		Potassium
ids Total Dissol Magnesium Calcium Sodium Potassium		Sulphate
inicans EC, pH, Eh, ids Total Dissol Magnesium Calcium Sodium Potassium Sulphate		Chloride
ids Total Dissol Magnesium Calcium Sodium Potassium Sulphate Chloride	Major Anions	Hydroxide as CaCO ₃
idd) EC, pH, Eh, lids Total Dissolv Magnesium Sodium Potassium Sulphate Chloride as		Carbonate as CaCO ₃
iids EC, pH, Eh, iids Total Dissolv Magnesium Sodium Potassium Sulphate Chloride Hydroxide as Carbonate a		Bicarbonate as CaCO ₃
ilids EC, pH, Eh, lids Total Dissolv Magnesium Sodium Potassium Sulphate Chloride Hydroxide as Carbonate a Bicarbonate		Aluminium
ilids EC, pH, Eh, lids Total Dissolv Magnesium Sodium Potassium Sulphate Chloride Hydroxide as Carbonate a Bicarbonate		Arsenic
ilids EC, pH, Eh, ilids Total Dissolv Magnesium Sodium Potassium Sulphate Chloride Hydroxide as Carbonate a Bicarbonate Aluminium		Boron
ilids EC, pH, Eh, lids Total Dissolv Magnesium Sodium Potassium Sulphate Chloride Sulphate Chloride as Hydroxide as Carbonate a Bicarbonate a Bicarbonate Arsenic Boron		Barium
ilids EC, pH, Eh, lids Total Dissolv Magnesium Sodium Potassium Sulphate Chloride Hydroxide as Carbonate a Bicarbonate a Bicarbonate Aluminium Arsenic Barium		Beryllium
iids EC, pH, Eh, iids Total Dissolv Calcium Sodium Potassium Sulphate Chloride Hydroxide as Carbonate a Bicarbonate a Bicarbonate Aluminium Arsenic Boron Barium		Cadmium
iids EC, pH, Eh, iids Total Dissol Calcium Sodium Potassium Sulphate Chloride as Carbonate a Bicarbonate a Bicarbonate a Bicarbonate Aluminium Arsenic Boron Barium Cadmium		Chromium
iids EC, pH, Eh, iids Total Dissolv Magnesium Sodium Potassium Sulphate Chloride as Carbonate a Bicarbonate a Bicarbonate a Bicarbonate Boron Arsenic Boron Barium Cadmium Cadmium		Cobalt
ilds EC, pH, Eh, ilds Total Dissolv Calcium Sodium Potassium Sulphate Chloride Hydroxide as Carbonate a Bicarbonate a Bicarbonate a Bicarbonate Aluminium Arsenic Boron Barium Cadmium Cadmium Cobalt		Copper
ilds EC, pH, Eh, ilds Total Dissol Magnesium Sodium Potassium Sulphate Chloride as Carbonate a Bicarbonate a Bicarbonate a Bicarbonate Aluminium Arsenic Boron Barium Cadmium Cadmium Copper	-	Iron
ilds EC, pH, Eh, ilds Total Dissolv Magnesium Sodium Potassium Sulphate Chloride as Carbonate a Bicarbonate a Bicarbonate a Bicarbonate a Bicarbonate Aluminium Arsenic Boron Barium Cadmium Cadmium Copper Iron	Heavy Metale (Diesolyad)	Lead
EC., pH, Eh, Total Dissolv Magnesium Sodium Potassium Sulphate Chloride as Carbonate a Bicarbonate a Bicarbonate a Bicarbonate Aluminium Arsenic Boron Barium Barium Cadmium Cadmium Copper Iron		Manganese
EC, pH, Eh, Total Dissolv Magnesium Sodium Potassium Sulphate Chloride as Carbonate a Bicarbonate a Bicarbonate a Bicarbonate Aluminium Arsenic Boron Barium Barium Cadmium Cadmium Cobalt Copper Iron Lead Manganese		Mercury
EC, pH, Eh, Total Dissolv Magnesium Calcium Sodium Potassium Sulphate Chforide as Carbonate a Bicarbonate a Bicarbonate a Bicarbonate Aluminium Arsenic Boron Barium Barium Cadmium Cadmium Copper Iron Lead Manganese		Molybdenum
EC., pH, Eh, Total Dissolv Magnesium Sodium Potassium Sulphate Chloride as Carbonate a Bicarbonate a Bicarbonate a Bicarbonate Aluminium Arsenic Boron Barium Barium Cadmium Copalt Copper Iron Lead Manganese		Nickel
EC, pH, Eh, Total Dissolv Magnesium Sodium Potassium Sulphate Chloride as Carbonate a Bicarbonate a Bicarbonate a Bicarbonate Arsenic Boron Barium Cadmium Cadmium Cobalt Copper Iron Lead Manganese Mercury Nickel		Selenium
EC, pH, Eh, Total Dissolv Magnesium Calcium Sodium Potassium Sulphate Chloride as Carbonate a Bicarbonate a Bicarbonate a Bicarbonate Arsenic Boron Barium Cadmium Cadmium Copalt Copper Iron Lead Manganese Mercury Nickel Selenium		Silicon
EC, pH, Eh, Total Dissolv Magnesium Calcium Sodium Potassium Sulphate Chforide as Carbonate a Bicarbonate a Bicarbonate a Bicarbonate Arsenic Boron Barium Cadmium Cadmium Copalt Copper Iron Lead Manganese Mercury Nickel Selenium Sillicon		Silver
EC, pH, Eh, Total Dissolv Magnesium Sodium Potassium Sulphate Chloride as Carbonate a Bicarbonate a Bicarbonate a Bicarbonate Aluminium Arsenic Boron Barium Cadmium Cadmium Cadmium Cadmium Cadmium Cadmium Cadmium Cadmium Cadmium Cadmium Cadmium Cadmium Cadmium Cadmium Cadmium Selenium Nickel Selenium		Strontium
EC, pH, Eh, Total Dissolv Magnesium Sodium Potassium Sulphate Chloride as Carbonate a Bicarbonate a Bicarbonate a Bicarbonate a Bicarbonate a Bicarbonate a Bicarbonate Aluminium Cadmium Cadmium Cadmium Cobalt Copper Iron Lead Manganese Mercury Nickel Selenium Silicon Silicon		Titaning
EC, pH, Eh, Total Dissolv Magnesium Calcium Sodium Potassium Sulphate Chloride as Carbonate a Bicarbonate a Bicarbonate a Bicarbonate a Bicarbonate a Bicarbonate a Bicarbonate Arsenic Boron Barium Cadmium Cadmium Copper Iron Lead Manganese Marcury Molybdenum Nickel Selenium Silicon Siliver		Titanium
EC, pH, Eh, Total Dissolv Magnesium Calcium Sodium Potassium Sulphate Chloride as Carbonate a Bicarbonate a Bicarbonate a Bicarbonate a Bicarbonate Aluminium Carbonate Beryllium Carbonate Beryllium Copalt Copper Iron Lead Manganese Mercury Nolybdenum Silicon Silicon Silicon		Vanadium
EC, pH, Eh, Total Dissolv Magnesium Sodium Potassium Sulphate Chloride as Carbonate a Bicarbonate a Bicarbonate a Bicarbonate a Bicarbonate Aluminium Carbonate Beryllium Copalt Copper Iron Lead Manganese Mercury Nolybdenum Silicon Silicon Silicon Silicon		Zinc
EC, pH, Eh, Total Dissolv Magnesium Calcium Sodium Potassium Sulphate Chforide as Carbonate a Bicarbonate a Bicarbonate a Bicarbonate a Bicarbonate Aluminium Arsenic Boron Beryllium Cadmium Copalt Copper Iron Lead Manganese Mercury Nolybdenum Sillicon Sillicon Sillicon Titanium Titanium		Ammonia
EC., pH, Eh, Total Dissolv Magnesium Calcium Sodium Potassium Sulphate Chloride as Carbonate a Bicarbonate a Sulphate Copper Iron Lead Manganese Mercury Molybdenum Silicon Silicon Silicon Zinc Zinc	Nutrients	Nitrate
EC, pH, Eh, Total Dissolv Magnesium Calcium Sodium Potassium Sulphate Chloride as Carbonate a Bicarbonate a Bicarb		AND COD

Form: 302 - Chain of Custody-Client, Issued 16/03/10, Version 4, Page 1 of 1.

-