Appendix 6

Road Transport Assessment

prepared by
 The Transport Planning Partnership Pty Ltd

$($ Total No. of pages including blank pages $=104)$

This page has intentionally been left blank

Austen Quary

Road Transport Assessment

Prepared for: Hy-Tec Industries Pty Ltd

19/01/2018

The Transport Planning Partnership
E: info@ttpp.net.au

Austen Qua my

Road Transport Assessment

Client: Hy-Tec Industries Pty Ltd

Version: Final

Date: 19/01/2018
TIPP Reference: 16330

Quality Record

Version	Date	Prepared by	Reviewed by	Approved by	Signature
Draft 01	22/5/2017	DorisLee	Ken Hollyoak	Ken Hollyoak	Kstame
Draft 02	13/12/2017	Doris Lee	Ken Hollyoak	Ken Hollyoak	kistmogel
Draft 03	17/01/2018	Doris Lee	Ken Hollyoak	Ken Hollyoak	KIthey
Draft 04	18/01/2018	DorisLee	Ken Hollyoak	Ken Hollyoak	kistagel
Final	19/01/2018	Doris Lee	Ken Hollyoak	Ken Hollyoak	

The Transport Planning Partnership (TTPP) has prepared this report in accordance with the instructions of Hy-Tec Industries Pty Ltd for their sole and specific use. Any other persons who use any information contained herein do so at their own risk.

Table of Contents

1 Introduction 1
2 Background to the Project 2
2.1 Site Location 2
2.2 Existing Austen Quarm Operations. 2
2.3 The Proposal 3
3 Existing Road Transport Environment 5
3.1 Road Network 5
3.1.1 Quary Access Road 5
3.1.2 Jenolan Caves Road6
3.1.3 Great Westem Highway7
3.2 Historic Traffic Volumes7
3.2.1 Heavy Vehic les 8
3.2.2 Annual Average Daily Traffic 8
3.3 Traffic Survey Program 10
3.4 Approved B-Double Route 12
3.5 Traffic Composition 13
3.6 Peak Hour Traffic Volumes 14
3.7 Intersection Survey 16
3.8 Austen Qua my Traffic Generation 18
3.9 Austen Qua my Traffic Distribution 20
3.10 Road Safety Review 22
3.10.1 Hartley Area 22
3.10.2Blue Mountains Area 24
3.11 Roadway Capacity and Effic iency 25
3.12 Intersection Operation 27
3.13 Performance of Key Intersections 27
3.13.1Model Performance Indic ators. 27
3.13.2 Intersection Performance 28
3.14 Pedestrians 28
3.15 BusServices. 29
4 Future Road Transport Environment 31
4.1 Background Traffic Growth 31
4.2 Changes to the Road Network 33
4.3 Austen Qua my Traffic Generation 33
4.3.1 Heavy Vehic les 33
4.3.2 Light Vehicles 34
4.3.3 Total Traffic Generation 35
4.4 Future Traffic Volumes 36
4.4.1 Year 2022 36
4.4.2 Year 2035 40
4.5 Future Roadway Capacity and Efficiency 45
4.5.1 Year 2022 45
4.5.2 Year 2035 47
4.6 Future Intersection Operation 48
4.6.1 Year 2022 48
4.6.2 Year 2035 49
4.7 Maximum Product Despatch Levels (300 Truck Loads) 50
4.7.1 Year 2022 50
4.7.2 Year 2035 51
4.7.3 Sensitivity Testing 52
4.8 Intersection Upgrade 53
4.9 Future Pedestrians, Cyc lists and Buses 54
4.10 Impactson Road Safety 55
5 Mitigation Measures. 56
6 Summary and Conclusions 57
6.1 Summary 57
6.2 Conclusions. 58
7 References 59
Tables
Table 3.1: Heavy Vehicle Data for Great Westem Highway (2017) 8
Table 3.2: AADTData for Great Westem Highway (2015 to 2017) 9
Table 3.3: AADTData (1992 to 2005) 9
Table 3.4: \quad Surveyed 2017 Average Daily Two-Way Traffic Volumes (vehicles/day) 12 and specific use. Any other persons who use any information contained herein do so at their own risk.
Table 3.5: Average Daily Traffic Composition (February 2017) 13
Table 3.6: Average Weekday Hourly Two-Way Traffic 4.00am to 10.00pm (vehicles/hour) - February 2017 15
Table 3.7: Average Saturday Hourly Two Way Traffic 5.00am to 3.00pm (vehicles/hour) 16
Table 3.8: Weekday Peak Hour Two Way Traffic at Intersection Approaches (vehicles/hour) 17
Table 3.9: Austen Quary Truck Loads at Weighbridge 18
Table 3.10: Austen Quary Two Way Traffic on Surveyed Roads February 2017 (vehicles/hour) 19
Table 3.11: Reported Crash Types J enolan Caves Road North of the Quamy Access
Road (2011 to 2016) 22
Table 3.12: Automobile LOS for Two-Lane Highway (Class II) 25
Table 3.13: PTSF and Levels of Service 27
Table 3.14: Level of Service 28
Table 3.15: Existing Intersection Level of Service 28
Table 3.16: Peak Period Frequenc y of Bus Services on J enolan Caves Road 29
Table 4.1: \quad Traffic Forec asts on the Great Westem Highway near Forty Bends (2-way) 31
Table 4.2: \quad Traffic Forecasts on the Great Westem Highway near Forty Bends (2-way) 32
Table 4.3: Changes in Annual Product and Truck Despatch Limits 33
Table 4.4: Light Vehicle Traffic Generation 35
Table 4.5: Peak Daily Two Way Austen Quamy Traffic Year (vehicles/hour) 35
Table 4.6: Peak Day Two Way Traffic in 2022 (vehic les/hour) 38
Table 4.7: Indic ative Peak Day Traffic Volumes on the Great Westem Highway 2022(2-way) 39Table 4.8: Indic ative Peak Day Heavy Vehicles on the Great Westem Highway 2022
(2-way) 40Table 4.9: Peak Day Two Way Traffic in 2035 (vehic les/hour)43
Table 4.10: Indic ative Peak Day Heavy Vehicles on the Great Westem Highway 2035 (2-way) 44
Table 4.11: Indic ative Peak Day Heavy Vehicles on the Great Westem Highway 2035
(2-way) 45
Table 4.12: PTSF and Levels of Service (2022) 46
Table 4.13: Indic ative Future Peak Day Levels of Service on the Great Westem Highway 2022 (2-way) 46
Table 4.14: PTSF a nd Levels of Service (2035) 47
Table 4.15: Indic ative Future Peak Da y Levels of Service on the Great Westem Highway 2035 (2-way) 48
Table 4.16: Intersection Level of Service (2022) 49
Table 4.17: Intersection Level of Service (2035) 49
Table 4.18: PTSF and Levels of Service (Maximum Operations 2022) 50
Table 4.19: Intersection Level of Service (Maximum Operations 2022) 51 and specific use. Any other persons who use any information contained herein do so at their own risk.
Table 4.20: PTSF and Levels of Service (Maximum Operations 2035) 51
Table 4.21: Intersection Level of Servic e (Maximum Operations 2035) 52
Table 4.22: Intersection Level of Service (Sensitivity Test) 52
Figures
Figure 2.1: Site Location and its Surrounding Environment 2
Figure 3.1: \quad Surrounding Road Network 5
Figure 3.2: Roads and Maritime Count Stations 8
Figure 3.3: Traffic Survey Location 11
Figure 3.4: B-Double Routes. 13
Figure 3.5: Average Weekday Heavy Vehicles on the Quary Access Road February 2017 21
Figure 4.1: Peak Daily Traffic Generation on Weekdays (2022) - 2-Way Movements. 3 37
Figure 4.2: Peak Daily Traffic Generation on Saturdays (2022) - 2-Way Movements. 37
Figure 4.3: Peak Daily Traffic Generation on Weekdays (2035) - 2-Way Movements. 41
Figure 4.4: Peak Daily Traffic Generation on Saturdays (2035) - 2-Way Movements.. 42
Figure 4.5: Concept Design for Intersection Upgrade 54

APPENDICES

A. TRAFFIC SURVEYS
B. CRASH DATA
C. SIDRA MODEUNG RESULTS
D. EXTRACTS OF FORECASTFLOWS FROM ROADSAND MARITME REPORTS

1 Introduction

This report has been prepared on behalf of Hy-Tec Industries Pty Ltd to present the findings of an assessment of the existing road transport environment in the vic inity of the Austen Quamy. Hy-Tec Industries are seeking a modification to Condition 8 of Schedule 2 of Development Consent SSD 6084 to increase the a nnual transport of quary products to 1.6 million tonnes and to increase the maximum daily laden trucks from the site to 300 and increase a verage daily laden trucks from the site to 200 , averaged over the number of days in a calendarmonth. Of relevance to this Project, Hy-Tec Industries are also seeking to commence transport operation from 4.00am rather than the currently a pproved start time of 5.00am.

It is noted that Hy-Tec Industries is also proposing minor modifications to the existing approved extraction area and overburden emplacement and subsequent modification to biodiversity offsetting obligations. These final two matters are not addressed in this report.

Austen Quamy is located 3.5 kilometres (km) south-southwest of Hartley village and 10 km south of Lithgow; a pproximately 100km west of Sydney (see Figure 2.1). Austen Quamy is accessed via the Quarry AccessRoad offJenolan Caves Road.

The aim of this report is to present background information regarding the road transport environment in the vic inity of the Austen Quamy, and identify a ny issues or constraints regarding the road transport environment which may influence the proposed increase of daily laden trucks from the site for the Project.

The results of traffic surveys between 4.00am and 5.00am have also been included to provide an overview of existing traffic at this time.

The rema inder of this report is set out as follows:

- Section 2 presents a brief overview of the proposed modification, to provide the context of possible effects on the road transport environment.
- Section 3 desc ribes the existing road environment conditions in the vic inity of Austen Quary, including the road network, traffic volumes and composition, historic al growth in traffic, road safety history, a nd the capacity of the road network.
- Section 4 disc usses traffic impacts that the intensified operation may impose on the surrounding road network.
- Section 5 disc usses the mitigation measures that are required to manage the traffic impacts on the road network.
- Section 6 draws a conclusion on the road transport assessment.

2 Background to the Project

2.1 Site Location

The Austen Quarry is accessed from a sealed access road ("the Quary Access Road") which intersects with J enolan Caves Road 4.2 km south of the intersection of J enolan Caves Road with the Great Westem Highway. The Quary Access Road extends southwards and then eastwards from J enolan Caves Road, crossing Yorkeys Creek (an ephemeral tributary of Coxs River) at an elevated culvert crossing, before entering the secondary processing area of the Quary via the incoming weighbridge. The site location is shown in in Figure 2.1.

Figure 2.1: Site Location and its Surrounding Environment

Base map source: Google Map 2017

2.2 Existing Austen Quamy Operations

The Austen Quary is a hard rock quamy that has been operational since 1995 under the original development consent which was granted by Lithgow City Council in March
1995. Development Consent SSD 6084 wasgranted in J uly 2015 to pemit an extension of the Quamy and operations under this consent commenced in September 2016.

The Austen Quary hasa pproval to despatch up to 1.1 million tonnesper annum (Mtpa) of products until March 2050. Products a re currently despatched between 5.00am and 10.00pm Monday to Friday, and between 5.00am and 3.00pm on Saturdays, public holidays excluded.

Product transportation is largely influenced by customer requirements and so varies from day to day, using a variety of truck configurations, depending on the customer and the destinations of the product. Transportation routes are generally determined by the destinations. However, products destined for the Sydney metrop olitan a rea a re generally despatc hed with artic ulated trucks, or 19m long B-Doubles. Deliveries to local road works projectstend to be undertaken using smaller volume rigid trucks, with a capacity of less than 15 tonnes (t). All trucks travelling to and from the Quarry use Jenolan Caves Road to reach the Great Westem Highway.

The Austen Quarry's Driver C ode of Conduct sets out requirements of all truck drivers approaching, leaving, and being loaded at the Austen Quamy to provide safe standard procedures and guidelines. The plan aims to maximise the safety of road users both inside the Quary and on public roads, ensure compliance with applicable legislation, sta ndards, codes, licences, and approvals, and to result in no significant traffic incidents or delays caused by quamy-related traffic movements.

Hy-Tec operates a driver and vehicle check system at the Austen Quary (and all of its operations). Hy-Tec developed the standard, Hy-Tec Cha in of Responsibility Driver/Vehicle Checks, which applies to any person involved in consigning; packing; loading; driving; operating a business which controlsthe use of a commercial vehicle a nd rec eiving goods or freight. This standard addresses legal obligations relating to drivers, vehicles, roads and route selection and vehicle operations (e.g. fatigue management, vehicle mass and load compliance, load restraint, daily vehicle checks). A Driver Fatigue Manual hasbeen produced and issued to all Hy-Tec drivers as well as everyone with links to the Cha in of Responsibility. A systematic and documented approach has been developed to check compliance of all drivers, be they $\mathrm{Hy}-\mathrm{Tec}$ drivers or contra ctors.

An adequate amount of informal on-site parking isprovided on site to meet the demands of employees and visitors. Due to the Quary's isolated location and the operating hours of the Quary, all employees/visitors travel to and from the Quamy is by car.

2.3 The Proposal

The current production and transportation limits are specified in Condition 8 of Sc hedule 2 of SSD-6084 as follows:

The Applicant shall not:
(a) transport more than 1.1 million tonnes of qua my products from the site during a ny financial year
(b) dispatch more than 250 laden trucks from the site on a ny one day; and
(c) dispatch more than 150 laden trucks from the site perday, a veraged over the total number of dispatch days in a ny calendarmonth.

Increasing demand for the products of the Quamy requires that the Company seek a modification to Condition 8 to inc rease the annual transport of qua my products from 1.1 to 1.6 Mtpa tonnesto increase the maximum daily laden trucks from the site to 300 and to increase average daily laden trucks from the site to 200 , averaged over the total number of dispatch days in any calendar month.

In a ddition, recent experience with transport operations between Hartley a nd Sydneybased destinations indicates that the peak hours for vehic les travelling towards Sydney are occuming earlier in the day. Hy-Tec Industries is proposing to commence product despatch earlier in the day to a void the majority of delays.

3 Existing Road Transport Environment

This section desc ribes the existing road transport conditions in the vicinity of the Austen Quary. It presents the results of surveys conducted during February 2017, a nd reviews the history of traffic growth in the region. As the majority of traffic a miving and departing the Quary uses the Quary Access Road, J enolan CavesRoad and the Great Westem Highway, these roads are foc used in this assessment.

3.1 Road Network

The road network in the vic inity of the Austen Quary is described below and is shown in Figure 3.1.

Figure 3.1: Surrounding Road Network

3.1.1 Quary Access Road

The Quamy Access Road is a private road connecting the Austen Quary to the extemal road network. It has a single travel lane in each direction with a sealed width of approximately 10 metres (m) with both incoming centre and road edge line-markings. It is a p proximately 3.1 km long from its intersection with J enolan Caves Road to the incoming Quamy weighbridge. It is the only vehic ularaccess for personnel and product transportation to and from the Quary. The land adjacent to the Austen Quary is leased to a contractor whose workforce also uses the Quary Access Road to access that land.

At its priority-c ontrolled intersection with J enolan Caves Road, drivers have a good sight distance of a pproximately 200 m to the left and right when exiting from the Quary Access Road. Widening of J enolan Caves Road at the intersection a ssists drivers tuming right from the Quary Access Road to do so with minimal disruption to northbound through traffic, through provision of a n a uxilia ry northbound la ne over approximately 100m. Vehiclestuming left into the Quamy Access Road use an a uxiliary deceleration lane which is approximately 70 m long.

3.1.2 Jenolan Caves Road

J enolan Caves Road forms part of a classified road route (253) from the Great Westem Highway near Hartley via Hampton, Jenolan Caves and Oberon to the Great Westem Highway near Bathurst. It is a State Road along this route, aside from the section between Kanangra WallsRoad via Edith to Oberon, which is a Regional Road. Jenolan Caves Road intersects with the Great Westem Highway near Hartley, approximately 11km northwest of the town of Mount Victoria. In the vic inity of the Austen Quamy, Jenolan Caves Road hasa sealed width of approximately 6.5 m with shoulders of varying widths, and typically has a single travel lane in each direction, with marked centre lines and edge lines. It is an approved route for use by heavy vehicles up to 19 m long B-Doubles, which may use the route 24 hours perday, seven days per week. It has a posted speed limit of 80 kilometres per hour (km/h).

Jenolan Caves Road providesa major tourist link between the Great Westem Highway a nd the Jenolan Caves. Traffic volumes on weekends are generally higher than weekdays.

At its priority-c ontrolled intersection with the Quamy Access Road, Jenolan Caves Road is widened to provide an a uxiliary right tum (AUR) treatment and a uxilia ry left tum (AUL) treatment, which allow through traffic on J enolan Caves Road to pass vehicles slowing to tum right or left into the Quary. Drivers on J enolan Caves Road have adequate sight distance when approaching the intersection from either direction to observe a vehicle tuming or waiting to tum at the intersection.

City of Lithgow Council has been granted $\$ 490,000$ as part of the $2016 / 17$ Black Spot funding to improve sealed shoulder to high level non-skid surface in J enolan Caves Road for up to 2.5 m on the curve south of the Great Westem Highway.

The intersection of J enolan Caves Road with the Great Westem Highwa y and Blackmans Creek Road is a four-way priority-c ontrolled intersection. A left tum deceleration lane and a right tum bay are provided on the Great Westem Highway for vehicles tuming into J enolan Caves Road.

Drivers exiting J enolan Caves Road onto the Great Westem Highway have good sight distance a vailable of approximately 200 m to the south and 400 m to the north.

3.1.3 Great Westem Highway

The Great Westem Highway is the major arterial road linking the Sydney metropolitan area to the Blue Mounta ins, Lithgow, Bathurst and other regional centres in the central west of New South Wales (NSW). It provides the major road freight, tourist and commercial link between Sydney and the Central West and Westem NSW, and also serves local commuting trips, local freight a nd industry a nd tourist trips.

Roadsand Maritime completed the upgrade works on the Great Westem Highway in the Blue Mounta ins in J uly 2015, including the widening the highway to four lanes between Emu Plains and Ka toomba; a nd the highway sa fety improvements between Katoomba and Mount Victoria.

The Australian and NSW Govemments are currently investing $\$ 250$ million to upgrade the Great Westem Highway between Katoomba a nd Lithgow. Some completed works included five kilometres of safety upgrades through Hartley Va lley opened to traffic at the end of December 2016. This involved the upgrade at the Great Westem Highway intersection with J enolan Caves intersection, consisting the following key features:

- widening of sealed shoulder on both sides of the Great Westem Highway
- provision of a continuous left tum lane from J enolan Caves Road into the Great Westem Highway westbound and a single westbound through lane in the Great Westem Highway.
- inc reased length of right tum bay in the Great Westem Highway into J enolan Caves Road.
- relocation of the start of the westbound overtaking lane to west of J enolan Caves Road to reduce the number of traffic manoeuvres occuming at the intersection.

As westbound traffic is limited to one lane, this layout reduces the gap required for tuming right from J enolan Caves Road into the Great Westem Highway, a nd hence reduces the delay for traffic tuming from the minor road.

It is understood that traffic monitoring will commence in 2022 for any necessary upgrade at this intersection.

3.2 Historic Traffic Volumes

Roads and Maritime collectsdata on traffic volumes at certa in locations on the road network. Traffic data for the Great Westem Highway between Meadow Flat and Falconbridge wasobtained from the Roadsand Maritime Traffic Volume Viewer at locations asshown in in Figure 3.2.

Figure 3.2: Roads and Maritime Count Stations

3.2.1 Heavy Vehicles

Table 3.1 shows the Heavy vehicle percentage of the total vehic les in Great Westem Highway.

Table 3.1: Heavy Vehicle Data for Great Westem Highway (2017)

Count Station	Location	Daily Heavy Vehicle $\%$
6105	60 m West of Curly Dick Road, Meadow Flat	18%
6191	1.41 km South of Forty Bends Road, Hartley	20%
6188	260 m West of Victoria Street, Mount Victoria	17%
$T 0485$	300 m South of Carawatha Road, Blackheath	27%

Source: Roads and Maritime; peak hour heavy vehicle percentage based on monthly data in March 2017
The proportion of heavy vehicles on the Great Westem Highway is reported to be approximately 20 percent of total daily traffic which is consistent with this data.

3.2.2 Annual Average Daily Traffic

The data is expressed in terms of Annual Average Daily Traffic (AADT) which is an a nnualised measure of the number of vehiclescrossing a point on each road.

Historic AADTdata for roads in the vic inity of the Austen Quamy are presented in Table 3.2.

Table 3.2: AADTData for Great Westem Highway (2015 to 2017)

Count Station	Location	$\mathbf{2 0 1 5}$	$\mathbf{2 0 1 6}$	$\mathbf{2 0 1 7}$	Growth Rate p.a.
6191	1.41 km South of Forty Bends Road, Hartley	8,699	-	8,687	-0.1%
6105	60m West of Curly Dick Road, Meadow Flat	8,177	-	8,487	1.9%
6188	$260 m$ West of Victoria Street, Mount Victoria	11,174	-	11,337	0.7%
$T 0485$	300m South of Carawatha Road, Blackheath	11,898	12,096	12,471	2.4%

AADTdata foryears 1992 to 2005 are presented in Table 3.3. The data suggests that over the period for which the data is available, AADTvolumes on the Great Westem Highway have fluctuated but have generally increased steadily at an average of a pproximately 2 percent per annum. Insuffic ient data is a vailable to determine growth on J enolan Caves Road. It is noted that in more recent years, Roads and Maritime only collects traffic data in one travel direction at these count stations in the Great Westem Highway, and therefore a growth rate cannot be established for traffic in both directions.

Table 3.3: AADTData (1992 to 2005)

Location	$\mathbf{1 9 9 2}$	$\mathbf{1 9 9 6}$	$\mathbf{1 9 9 9}$	$\mathbf{2 0 0 2}$	$\mathbf{2 0 0 5}$Growth Rate p.a.	
Great Westem Highway						
Hartley, West of J enolan Caves Road	6,711	8,027	7,485	8,583	8,757	2.3%
Little Hartley, East of Cox River Road	8,443	9,511	9,598	10,820	10,948	2.3%
East of J enolan Caves Road	8,059	8,371	8,548	9,565	9,968	1.8%
Jenolan Caves Road						
Oberon, East of Dudley Street	800	-	-	-	-	-

Traffic volumes on the Great Westem Highway between Mount Victoria and Lithgow generally decrease towards the west based on volumes ${ }^{1}$ presented in the highway

[^0]upgrade assessment review (Evans and Peck, 2012). These traffic volumes are shown as follows:

- Victoria Pass 14,000 vehiclesperday
- Little Hartley 10,400 vehicles perday
- Hartley 8,800 vehic lesperday
- Forty Bends 7,900 vehiclesperday.

3.3 Traffic Survey Program

To quantify current traffic conditions on the immediate roads serving the subject site, a program of additional traffic surveys was commissioned by TIPP.

Automatic tube count surveys were completed over seven days between Thursday 16 February 2017 and Wednesday 1 March 2017. The tube count surveys collected vehicle volume and classific ation data at hourly intervals overa 14-day period on J enolan Caves Road and the Quarry Access Road. The locations of the tube count surveys are displayed on Figure 3.3.

Table 3.4 provides a summary of the traffic volumescollected in 2017.

Figure 3.3: Traffic Survey Location

Table 3.4: Surveyed 2017 Average Daily Two-Way Traffic Volumes (vehicles/day)

Day and Date	Jenolan Caves Road North of Quary Access Road	Jenolan Caves Road South of Quamy Access Road	Quary Access Road
Monday	1,534	889	371
Tuesday	1,450	884	349
Wednesday	1,422	902	302
Thursday	1,366	882	329
Friday	1,678	1,097	346
Saturday	1,657	1,374	157
Sunday	$\mathbf{1 , 4 9 0}$	$\mathbf{9 3 1}$	$\mathbf{3 3 9}$
Average Weekday			

The surveys indicate that Quary Access Road camied between 15 and 371 vehic lesper day (two way) over the two weeks of surveys, and an average of 339 vehic les per day on weekdays. The traffic activity at the Quary differed signific a ntly between weekdays and weekend days, with an average of 157 vehic lesperday on the Saturdays and 15 vehic les per day on the Sundays. In contrast, the busiest days on J enolan Caves Road were Friday and weekend days, a nd the Quary traffic was at its lowest on weekend days. The Quary thus makes only a very minor contribution to weekend day traffic on Jenolan Caves Road compared with weekdays.

Jenolan Caves Road camed between 1,366 and 1,678 vehicles perday north of the Quary Access Road, and between 882 and 1,447 vehicles perday south of the Quary Access Road.

3.4 Approved B-Double Route

Both Great Westem Highway and Jenolan Caves Road are approved B-Double routes, as shown in the green lines in the Restriction Access Vehicle Map in Figure 3.4. These routes permit up to B-Double vehicles up to 19 m (over 50 tonnes).

Figure 3.4: B-Double Routes

Source: Roads and Maritime

3.5 Traffic Composition

The surveys described in Section 3.3 a lso provided data on the composition of traffic on the roads, using the Austroads (2004) Vehic le Classific ation System. Light vehicles include motorcycles, cars, vans, 4WDs, a nd utilities (including those towing a trailer or caravan). Heavy vehicles include single unit "rigid" trucks and buses with two to four a xles a nd a ric ulated vehic les such as semitra ilers, rigid trucks with trailers, B-doubles and road trains. Table 3.5 provides a summary of the percentage composition of the traffic on the average weekday and Saturday over the seven-day survey period.

Table 3.5: Average Daily Traffic Composition (February 2017)

Site No.	Jenolan Caves Road North of Quary Access Road	Jenolan Caves Road South of Quary Access Road	Quamy Access Road
Vehic les per Weekday			
Light	1,045	673	69
Rigid	125	94	232
Articulated	317	164	

Ste No.	Jenolan Caves Road North of Quary Access Road	Jenolan Caves Road South of Quary Access Road	Quary Access Road
Total	1,487	931	335
Percent of Weekday Traffic			
Light	70\%	72\%	20\%
Rigid	8\%	10\%	10\%
Artic ulated	21\%	18\%	69\%
Total	100\%	100\%	100\%
Vehic les per Saturday			
Light	1,398	1,223	31
Rigid	135	112	12
Articulated	115	39	113
Total	1,648	1,374	155
Percent of Saturday Traffic			
Light	85\%	89\%	20\%
Rigid	8\%	8\%	7\%
Articulated	7\%	3\%	73\%
Total	100\%	100\%	100\%

Note: Difference between total vehicles per weekday and Table 3.4 is due to "Class 13" classific ation unknown vehicles

Table 3.5 demonstrates the difference between the types of vehicles on the Quary Access Road and those on Jenolan CavesRoad on the average weekday and Saturday. On the average weekday, approximately 30 percent of vehic les on Jenolan Caves Road are heavy vehic les, whilst heavy vehicles were approximately 80 percent of vehic les on the Quary Access Road. On Saturdays, all heavy vehic les (including those travelling to and from Austen Quamy as well as those not associated with the Quary) accounted forbetween approximately 11 percent and 15 percent of total traffic on Jenolan Caves Road.

3.6 Peak Hour Traffic Volumes

A review of the traffic survey results indic ates that on the average weekday, the traffic generated by the Austen Quary peaked at different times to the passing traffic on Jenolan Caves Road. Table 3.6 presents the weekday hourly volumes measured at each of the survey locations over the hours during which the Austen Quamy operates.

It is noted that approved hours for product despatch at the Austen Quary commenced at 5.00am. Heavy vehicles recorded between 4.00am and 5.00am are trucks a riving prior to being loaded for 5.00am. It is common fortrucks to park in the vic inity of the site administrative facilities until 5.00am.

Table 3.6: Average Weekday Hourly Two-Way Traffic 4.00am to 10.00pm (vehicles/hour) - February 2017

Time	Jenolan Caves Road North of Quary Access Road				Jenolan Caves Road South of Quary Access Road				Quamy Access Road			
	Light	Rigid	AV	Total	Light	Rigid	AV	Total	Light	Rigid	AV	Total
4.00-5.00	22	2	9	33	4	1	6	11	1	0	7	9
5.00-6.00	50	3	19	73	15	3	6	24	10	2	21	33
6.00-7.00	47	5	19	70	22	5	5	32	3	1	19	23
7.00-8.00	60	8	20	88	31	6	10	46	2	3	17	22
8.00-9.00	72	9	25	106	40	7	14	61	3	2	19	23
9.00-10.00	83	8	23	114	48	5	12	65	2	3	19	23
10.00-11.00	90	12	30	131	49	9	16	75	3	3	22	28
11.00-12.00	79	11	27	117	47	8	14	69	3	4	19	25
12.00-13.00	66	8	25	100	47	6	12	65	4	2	18	24
13.00-14.00	62	9	27	98	46	6	12	65	3	3	19	25
14.00-15.00	69	10	21	100	55	9	10	73	4	3	14	21
15.00-16.00	70	9	16	96	50	8	7	65	8	3	13	24
16.00-17.00	74	9	14	97	59	8	5	72	5	1	12	18
17.00-18.00	66	7	9	82	55	4	6	65	8	3	7	17
18.00-19.00	44	7	6	57	39	5	4	48	2	1	3	6
19.00-20.00	32	3	5	40	21	3	4	27	1	1	4	5
20.00-21.00	18	3	3	24	17	1	2	20	1	1	1	4
21.00-22.00	13	2	2	16	11	1	2	14	1	1	0	2

Note: bold is the peak hour before and after midday at each survey location
The results demonstrate that on the average weekday, the Austen Quarm traffic peaks earlier in the moming and earlier in the aftemoon than the traffic on Jenolan Caves Road. The variation in hourly traffic on the Quarry Access Road is however quite low throughout the average weekday, ranging between 9 and 33 vehic les per hour
between 4.00am and 6.00pm. Overall peak hour volumes on J enolan Caves Road are relatively low, with up to 131 vehic les per hour using the road.

Traffic volumes on J enolan Caves Road are subject to tourist traffic, particularly on weekends. A review of the traffic survey results indicates that on the Saturday, the traffic generated by the Austen Quarry peaked at different times to the passing traffic on J enolan Caves Road. Table 3.7 presents the Saturday hourly volumes measured at each of the survey locations over the hours during which the Austen Quamy operates.

Table 3.7: Average Saturday Hourly Two Way Traffic 5.00am to 3.00pm (vehicles/hour)

Time	Jenolan Caves Road North of Quamy Access Road				Jenolan Caves Road South of Quamy Access Road				Quamy Access Road			
	Light	Rigid	AV	Total	Light	Rigid	AV	Total	Light	Rigid	AV	Total
5.00-6.00	35	2	16	53	9	2	4	15	6	2	17	25
6.00-7.00	45	4	10	59	22	7	2	30	2	1	11	13
7.00-8.00	51	11	9	70	42	6	4	52	2	1	9	11
8.00-9.00	91	8	8	107	75	7	3	84	1	1	9	10
9.00-10.00	125	14	13	151	94	9	3	105	1	2	16	19
10.00-11.00	111	13	15	138	96	8	2	105	1	2	18	20
11.00-12.00	126	14	15	155	100	7	4	111	1	1	19	21
12.00-13.00	93	8	7	108	94	6	0	100	7	2	6	15
13.00-14.00	102	8	1	111	101	9	2	111	0	1	0	1
14.00-15.00	106	12	3	120	107	11	3	120	1	1	0	2

Note bold is the peak hour before and after midday at each survey location
The results demonstrate that on Saturdays, the variation in hourly traffic on the Quamy Access Road is however quite low throughout moming, ranging between 10 and 25 vehic les per hour between 5.00am and midday. After midday, the traffic on the Quary Access Road declined to reach a very low level during the aftemoon operating hours. Overall peak hour volumes on J enolan Caves Road are relatively higher than the Quamy Access Road, a lbeit with fewer than 155 vehic les per hour using the road during the Austen Quamy operating hours, which is higher than the average weekday moming a nd aftemoon peak hours of 131 vehicles per hour and 100 vehic les perhour, respectively (Table 3.6).

3.7 Intersection Survey

The intersection tuming movement surveyscompleted on Thursday 16 February 2017 identified the busiest hours at the intersections of J enolan Caves Road with the Quamy Access Road and the Great Westem Highway. The peak hours at the two intersections,
which are those intersections most directly impacted by current/future quamy operation coinc ide during the peak hours, na mely, 8.15am to 9.15am, and 3.30pm to 4.30pm. These peak hours represent the hours during which the highest number of vehic les passed through each intersection during the surveyed periods, thus the times at which the operation of the intersections would be at their worst. They a re not necessa rily the peak hours associated with the movement of vehicles generated by the Quarry.

The tuming movement surveys are presented in Appendix A, and the two-way volumes recorded during the peak hours on each of the intersection approaches are summarised in Table 3.8.

Table 3.8: Weekday Peak Hour Two Way Traffic at Intersection Approaches (vehicles/hour)

Intersection and Approach	AM Peak	PM Peak
Jenolan Caves Road and Great Westem Highway	$8.15 \mathrm{am}-9.15 \mathrm{am}$	$3.30 \mathrm{pm}-4.30 \mathrm{pm}$
Blackmans Creek Road	4	3
Great Westem Highway (East)	536	619
Jenolan Caves Road	91	85
Great Westem Highway (West)	469	559
Jenolan Caves Road and Quary Access Road	83	$3.15 \mathrm{am}-9.15 \mathrm{am}$
Jenolan Caves Road (North)	24	23
Quary Access Road	59	70
Jenolan Caves Road (South)		8.30 pm

The tuming movement data at the Quary Access Road intersection (Appendix A) indic ates that during the 3 -hour moming survey periods, the Quary generated a total of 29 inbound and 25 outbound trips. During the 3 -hour evening survey period, the Quamy generated a total of 21 inbound and 32 outbound trips, over 50 percent of these tripswere associated with light vehicles in either inbound or outbound direction.

Over the survey period, all heavy vehicle movements in and out of the Quary Access Road were to and from the north. Over the six hours surveyed, a p proximately 70 percent of light vehicles generated by the Austen Quary travelled to and from the north, and 30 percent of light vehicles travelled to and from the south.

3.8 Austen Quarry Traffic Generation

Data wasobtained from the Austen Quary weighbridge providing information on the total number of truck loads between 1 J uly 2016 and 30 April 2017 inclusive. On the basis of this data, the average number of loads per weekday and Saturday has been calculated forthe period asa whole, and forthe days during which the traffic surveys were conducted, taking into consideration the number of operating hours each day, the variation in operating hoursbetween weekdays and Saturdays, and public holiday closures. The results are summarised in Table 3.9.

Table 3.9: Austen Quary Tuck Loads at Weighbridge

	Total Number of Truck Loads	Average Truck Loads per Weekday	Average Truck Loads per Saturday
Weighbridge data (1/7/ 2016 to 30/4/2017)	27,883	117	68
Weighbridge data (aligned with TTPP Survey Period 15/2/2017 to $28 / 2 / 2017$)	1,425	130	63

During the 10 -month period, the Austen Quary produced an average of 117 truckloads of products per weekday, and 68 truckloads of product per Saturday, which generated an average of 234 truck trips per weekday and 136 truck trips per Saturday. This is equivalent to an average of 14 truck tripsper operating hour (including despatch of loaded trucks and retum of empty trucks). Comparison between the records from the Quary and the surveyed traffic during February 2017 (Section 3.5) indic ates that the traffic surveys correlate well with the despatch records. The despatch records show that on those surveyed days, an average of 130 truckloads of products were despatched per weekday, generating 260 truck trips perweekday on the Quary Access Road and Jenolan Caves Road to the north. The traffic surveys show an average of 267 heavy vehic le trips generated perweekday over the same period, being 35 rigid truck trips and 232 artic ulated truck trips (Table 3.5). The small difference of seven truck trips per weekday is likely to be truck trips which are not associated with despatch of quary products, for example, deliveries of consumables, maintenance and repair vehicles, and contractors.

On the surveyed Saturdays, the surveyed average of 125 truck trips (63 truckloads) of product perday correlates well with the records from the Quary (63 truckloads).

Notably, the Quary is currently operating below its production limit (i.e. maximum 250 truckloads per day and average 150 truckloads).

Table 3.9 demonstrates that the level of a ctivity on the surveyed weekdays of 260 truck trips per weekday (average of less than 10 truckloads per hour over the operating
hours) was above the a verage of 234 truckloads per weekday calculated over the 10 months from J uly 2016 to April 2017. The surveyed weekdays can be considered to have covered a reasonably busy period overthe yearand are thusconsidered to be a reasonably robust basis for exa mining the existing road transport environment associated with the Austen Quamy, being both consistent with the Quamy's records and representing above a verage activity.

Light vehicle traffic generation by the Austen Quamy is the result of the workforce of 16 people amiving and departing each day, together with the a mival and departure of visitors plus/ or contractors. The surveyed a verage of light vehic le trips per weekday also includes trips associated with the movement of staff to and from the adjacent leased land, which is not related to activity at the Austen Quary. For the purpose of this a ssessment, the light vehicle traffic generated by the Austen Quamy is estimated as follows:

- 16 workers a miving and departing at start and end of shift $=32$ vehicle tripsper day
- 10 visitors or contractors a miving a nd departing on a verage weekday $=20$ vehicle trips per weekday
- 4 visitors or contractors a riving a nd departing on Saturday $=8$ vehic le trips per Saturday.

The balance of the surveyed light vehicle trips on the Quary Access Road is assumed to be the movement of staff for the adjacent site and a number of Quarry staff being required to exit and re-enter the Quamy during the day.

The surveyed traffic generated by the Austen Qua my has been a ssessed to estimate its contribution to traffic on J enolan CavesRoad on the average weekday. The resulting volumes are summarised in Table 3.10 forthe average weekday and Saturday total traffic and for the peak hours previously identified as being the busiest weekday hours associated with the Quamy traffic and Jenolan Caves Road traffic.

Table 3.10: Austen Quarry Two Way Traffic on Surveyed Roads February 2017 (vehicles/hour)

Time	Jenolan Caves Road North of Quany Access Road				Jenolan Caves Road South of Quany Access Road				Quany Access Road			
	Light	Rigid	AV	Total	Light	Rigid	AV	Total	Light	Rigid	AV	Total
Weekday												
4.00-5.00	1	0	7	8	0	0	0	0	1	0	7	9
5.00-6.00	6	2	21	29	3	0	0	3	9	2	21	32
10.00-11.00	2	3	22	27	0	0	0	0	2	3	22	27
11.00-12.00	2	4	19	24	0	0	0	0	2	4	19	24

Time	Jenolan Caves Road North of Quany Access Road				Jenolan Caves Road South of Quary Access Road				Quamy Access Road			
	Light	Rigid	AV	Total	Light	Rigid	AV	Total	Light	Rigid	AV	Total
16.00-17.00	3	1	12	16	1	0	0	1	4	1	12	17
17.00-18.00	6	3	7	15	1	0	0	1	7	3	7	16
Weekday Daily Total	50	35	232	317	9	0	0	9	59	35	232	325
Saturday												
5.00-6.00	4	2	17	23	1	0	0	1	5	2	17	24
11.00-12.00	0	1	19	20	1	0	0	1	1	1	19	21
12.00-13.00	6	2	6	14	1	0	0	1	7	2	6	15
14.00-15.00	0	1	0	1	1	0	0	1	1	1	0	2
Saturday Daily Total	15	12	113	139	7	0	0	7	22	12	113	146

Note: the above traffic volumes include two-way Qua my truck trips (not laden loads).
Over the two weeks of surveys, on the average weekday, the Austen Quamy contributed approximately 22 percent of the total traffic and 60 percent of heavy vehicle traffic on J enolan Caves Road north of the Quarry AccessRoad, and less than 1 percent of the total traffic on J enolan Caves Road south of the Quary Access Road. On the Saturday, the Austen Quary contributed six percent of the total traffic and 50 percent of heavy vehicle traffic on Jenolan Caves Road north of the Quary Access Road, and less than 1 percent of the total traffic on J enolan Caves Road south of the Quary access.

Thus, the Austen Quary generates a pproximately half of the heavy vehic les on J enolan Caves Road north of the Quary Access Road. Other heavy vehic les using J enolan Caves Road include tourist coaches, buses, and some trucks associated with Oberon White Granite Quary (Mudgee Stone Company) which has approval to generate around 90 two ways trips perday (AADT); Oberon Hardrock Quamy (Oberon Qua mies) which generates traffic principally to Sydney markets at a rate of up to 400000 tpa and the Highland Pine sa wmill complex at Oberon which is reported to generate just over 100 trucks perday.

3.9 Austen Quamy Tra ffic Distribution

The surveyed traffic volumes and Quary records provided by Hy -Tec provide information regarding how the number of trucks despatc hed varies through the day. Figure 3.5 presents the number of inbound and outbound heavy vehicle movements on the Quary Access Road throughout the average weekday, as surveyed during February 2017.

Figure 3.5: Average Weekday Heavy Vehicles on the Quary Access Road February 2017

Figure 3.5 demonstrates that the distribution of truck trips through the day is similar for inbound and outbound trucks, i.e. trucks are not typic ally held at the Quary waiting for despatch throughout the day. There is a decrease in truck trips made during the moming "commuter" peak hours, with a peak in outbound trips between 5 am and 6am, followed by a decrease in outbound trips being made between 8am and 9am.

The surveys show a small number of empty trucks a rive at the Quary prior to 5am prior to being loaded at 5.00am. It is common for trucks to park in the vic inity of the site administrative facilities until 5.00 am . Trucks proceed to the incoming weighbridge after 5am.

School zones on the Great Westem Highway operate between 8am and 9.30am, and between 2.30pm and 4pm. The Austen Quary operating hours for product despatch from 5am to 10pm allow Hy-Tec to despatch trucks earlier in the moming so as to reduce the impacts of the Quary trucks during commuter peaks and during operation of the moming school zones along the Great Westem Highway. During the aftemoon, the number of trucks despatched from the Quamy is generally lower than the moming, and the number of trucks travelling on the Great Westem Highway during the commuter peak and school zone periods is low.

Hy-Tec's mana gement of despatch times benefits the local communities in Hartley and throughout the Blue Mountains by reducing the impact of the truck traffic during the
more sensitive hours, but also benefits Hy -Tec by reducing the number of truck trips made at times when traffic speeds are lower due to either school zo ne limits or increased demand.

3.10 Road Safety Review

3.10.1 Hartley Area

Aspart of the baseline conditions assessment, validated crash data was obta ined from Roads and Maritime for the most recent five-year period available at that time, being from 1 J uly 2011 to 30 J une 2016 inc lusive.

The data is based on crashes reported to the Police, including Jenolan Caves Road between the Great Westem Highway and McKanes Falls Road, a nd McKanes Falls Road between Jenolan CavesRoad and Great Westem Highway. Over the five years, 16 crashes were reported. Of these, 11 crashes occurred between the Quarry Access Road and the Great Westem Highway, including at the intersection with the Great Westem Highway, and these are summarised in Table 3.11.

The locations of the crashes as plotted by Roads and Maritime are provided in Appendix B. It is noted that while all crashes are included in the graphic, some are overlaid by a crash reported at the same location. In these cases, one ormore crashes are not identified by their ID number and so may not be easily identified in the graphic. The crashes on J enolan Caves Road were typic ally on the bends to the north of the Quamy Access Road.

Table 3.11: Reported Crash Types J enolan Caves Road North of the Quary Access Road (2011 to 2016)

	Single Vehicles	Multiple Vehicles
	Off Path, on Curve	Opposite Direction
Total Crashes	10	1
Location		
At intersection	0	1
Mid-block	10	0
Road Surface Condition	7	1
Dry Road	3	0
Wet Road	1	0
Natural Lighting	8	1
Dawn	1	0
Daylight		
Darkness		1
Weather	5	1
Fine		1

	Single Vehicles	Multiple Vehicles
	Off Path, on Curve	Opposite Direction
Fog or mist	1	0
Overcast	2	0
Raining	2	0
Vehicle Type		
Motorcycle	3	1
Car	4	0
Light Truck	1	0
Semi-trailer	1	0
B-Double	0	0
Severity of Crash	6	0
Fatal	4	0
Injury		0
Non-injury	10	1
Factors*	3	0
Speed	0	0
Fatigue	1	
None		
*More than one factorcan be nominated fora single crash	0	

The majority of crashes involved a single vehicle leaving the camiageway and typically striking an object such as an embankment. Speed was a main contributing factor in all of these crash types, and all occurred on bendson J enolan Caves Road.

The head-on crash involved a motorcycle and large rigid vehicle in Jenolan Caves Road north of the Glenroy Bridge. The recordssuggest that this fatal event involved the motorcycle travelling on the incorrect side of the road.

The reported crashes occurred between 6.20am and 8.15 pm , although over 50 percent of the crashes (6 crashes) occurred around mid-day between 11.22am and 13.42pm. This suggests that icy road conditions were not a contributing factor to crashes on Jenolan Caves Road. Two of these crashes occured when the road surface was wet. The fatal event occurred in fine weather conditions during mid-day at 12.50 pm .

The review of the history of crashes on J enolan Caves Road indicates that although there is no specific location (such as an intersection) with a partic ularly poor record, the speed of vehicles on bends to the north of Austen Quary have resulted in drivers losing control of their vehicle.

The crash record indicatesthat heavy vehicles do not appearto contribute to the history of crashes in J enolan Caves Road. Hy-Tec Industries have confimed that there have been no crashes involving Quamy vehicles.

3.10.2 Blue Mounta ins Area

Validated crash data was also obtained from the Roads and Maritime for all crashes on the Great Westem Highway between Lapstone and Lithgow for the most recent fiveyear period a vailable, being 1 J uly 2011 to 30 J une 2016 inc lusive. A total of 1,111 c rashes were reported, as follows:

- 8 fatal crashes, which resulted in 9 fatalities
- 589 injury crashes, which resulted in 789 people being injured
- 514 non-casualty crashes.

Crashes are identified by a coding system which groupscrash typesinto general categories such as intersection, overtaking or off path. They are then further categorised into specific crash types, such as intersection cross traffic, overtaking cutting in, off path on straight to left, or off path to left on right bend into object. Review of the data reveals the following key findings:

- The single most common general crash type was rear-end type crashes. These a ccounted for 34 percent of all c rashes (380 crashes).
- The next most common general crash type was of single vehicles which lost control and left the camiageway. These accounted for 31 percent of all crashes (347 crashes).
- The third most common general c rash type was intersection-type crashes, which a ccounted for 28 percent of all c rashes (306 crashes).
- 110 c rashes, i.e., 10 percent of all crashes, involved a rigid, a rticulated truck or a BDouble. Of these, a pproximately 39 percent were rear end type crashes, 25 percent involved single vehicles which left the camiageway, 15 percent involved vehicleschanging lane, and 3 percent were head on crashes.
- Pedestrians were involved in two crashes.
- Speed was nominated as a contributing factor in 35 percent of crashes, and fatigue was nominated as a contributing factor in 8 percent of crashes, noting these factors a re not mutua lly exc lusive.
- 38 percent of crashes (420 c rashes) occurred on a wet road surface and 0.5 percent (5 crashes) occurred on a snow oriced road surface.
- 29 percent (321 crashes) oc curred during rain, 10 percent (116 c rashes) oc curred when overcast, and 3 percent (29 crashes) occurred during fog or mist.
- 28 percent of crashes occurred on weekend days, a nd 72 percent on weekdays.
- The worst hours of the day forcrashes were $3 p m$ to $4 p m$ (8.3 percent), $1 p m$ to $2 p m$ (8.1 percent), 4 pm to 5 pm (7.7 percent) a nd 5 pm to 6 pm (6.8 percent).

The locations of all crashes along the Great Westem Highway between La pstone and Lithgow are also presented in Appendix A.

3.11 Roadway Capacity and Efficiency

The capacity of a road is defined asthe maximum hourly rate at which vehiclescan reasonably be expected to traverse a point or uniform section of a lane orroadway during a given time period under the prevailing roadway, traffic and control conditions. The capacity of a single traffic lane will be affected by factors such asthe pavement width and restricted lateral clearances, the presence of heavy vehicles and grades.

Level of Service (LOS) is defined asa qualitative measure describing the operational conditions within a traffic stream asperceived by drivers and/orpassengers. A LOS definition generally describes these conditions in terms of factors such as speed and travel time, freed om to ma noeuvre, traffic intemuptions, comfort, convenience and safety. LOS A provides the best traffic conditions, with no restriction on desired travel speed or overtaking. LOS B, C and D describe progressively worse traffic conditions. LOS E occurs when traffic conditions are at or close to capacity, and there is virtually no freedom to select desired speeds orto manoeuvre in the traffic stream. The service flow rate for LOSE is taken as the capacity of a lane orroadway.

Austroads (2013) provides guid elines for the capacity of two lane, two-way rural roads, which in tum, refers to the Highway Capacity Manual (Transportation Research Board [TRB], 2010). TRB (2010) distinguishes between different categories of two la ne two-way roads, with ClassI being roads on which motorists expect to travel at rela tively high speeds. They most often serve long-distance trips or provide connecting links between facilities that serve long-distance trips. Class Il roads are those on which motorists do not necessa rily expect to travel at high speeds, and may function as access routes to Class I facilities, serve asscenic or rec reational routes or pass through rugged terrain.

On this basis, J enolan Caves Road is considered a Class II road. The LOS for Class II roads is defined only by percent-time-spent-following (PTSF). The LOS criteria for Class II two-lane highways are as shown in Table 3.12.

Table 3.12: Automobile LOS for Two-Lane Highway (Class II)

LOS	Percent Time Sent Following PRSF (\%)
A	≤ 40
B	$>40-55$
C	$>55-70$
D	$>70-85$
E	>85

TRB (2010) presents detailed methodsfor calculating the PTSF, however it a lso presents a basic relationship between traffic flow rate and PTSF for base conditionson a twoway road. This indic ates that below a two-way peak hourly two-way volume of a round 650 vehic les per hour, the PTSF would typic ally be below 40 percent, a nd LOS would be A for Class Il roads (refer to Table 3.12). Nevertheless, the PTSF forJ enolan Caves Road has been assessed based on the surveyed traffic conditions.

The PTSF is estimated from the demand traffic volumes, the directional distribution of that traffic, and the percentage of no-passing zones. As a general review of the existing Levels of Service on the subject roads, the following a ssumptions/ estimates have been made in calculating the PTSF:

- The passenger-car equiva lent for heavy vehic les for calc ulation of PTSF 1.8 - this is a factor which is used to take into account the influence of heavy vehicles on the flow of traffic on a road, assessing each heavy vehicle as multiple of passenger cars. This factor applies where two-way traffic volumes are below 600 passenger car units per hour ($\mathrm{pc} / \mathrm{hr}$), and assumes that the terra in causes heavy vehicles to reduce their speeds substantially below that of passengercars, but not to operate at crawl speeds for any signific ant length of time or at frequent intervals.
- 100 percent no-passing opportunities along the routes, i.e. along the route, drivers would be restricted from passing a nother vehicle for the whole length of J enolan CavesRoad between the Quary Access Road and the Great Westem Highway. Jenolan Caves Road hasa single travel lane in each direction with no overta king la nes between the Quary Access Road and the Great Westem Highway, so restrictions on overtaking would generally be as a result of centre line marking which prevents drivers from crossing to the wrong side of the camageway to overtake due to sight distance or other constra ints.

On this basis, the surveyed volumes have been converted to passenger-car units, and the PTSF and Levels of Service results estimated in Table 3.13.

Table 3.13: PISF and Levels of Senvice

Location	AM Peak Hour				PM Peak Hour			
	Hour Starting	pc/hr (2-way)	PISF	LOS	Hour Starting	pc/hr (2-way)	PISF	LOS
Weekday								
Jenolan Caves Road North of Qua my Access Road	$10 a \mathrm{~m}$	164	35.4	A	12 pm	127	32.6	A
Jenolan Caves Road South of Qua my Access Road	$10 a \mathrm{~m}$	95	32.0	A	2 pm	87	31.4	A
Saturday								
Jenolan Caves Road North of Qua my Access Road	$11 a \mathrm{~m}$	178	39.5	A	2 pm	131	36.9	A
Jenolan Caves Road South of Qua my Access Road	$10 a \mathrm{~m}$	112	35.4	A	1 pm	119	35.9	A

The results in Table 3.13 indicate that, based on the assumptions disc ussed above, the surveyed locations would be expected to experience good Levels of Service with regard to roadway efficiency and delays during the busiest hours.

It should be noted that this LOS is a general measure of the vehicle operating conditions on the roads with regard to the number of vehicles and their potential for interaction with each other. It does not reflect the existing road pavement conditions.

3.12 Intersection Operation

The operation of the key intersections within the study area have been assessed using SIDRA Intersection 7, a computer based modelling package which assesses intersection performance under prevailing traffic conditions.

The operating characteristicscan be compared with the performance criteria set out in Table 3.14. It is noted that average delay pervehicle is expressed in secondsper vehicle and is measured for the movement with the highest average delay pervehicle at prionity intersections such as the two surveyed intersections on J enolan Caves Road.

3.13 Performance of Key Intersections

3.13.1 Model Performance Indicators

SIDRA Intersection 7 modelling provides several useful indic ators to determine the level of intersection performance.

Level of Service (LOS) is a basic performance parameter used to describe the operation of an intersection. Levels of service indic ators range from A (indicating good
intersection operation) to F (indicating over-saturated conditions with long delays and queues). At priority controlled (give-way and stop controlled) and roundabout intersections, the LOS is based on the modelled delay (seconds per vehicle) for the most delayed movement (refer to Table 3.14).

Table 3.14: Level of Senvice

Level of Service	Average Delay (seconds per vehicle)	Traffic Signals, Roundabout	Give Way and Stop Signs
A	Less than 14	good operation	good operation
B	15 to 28	good with acceptable delays and spare capacity	acceptable delays and spare capacity
C	29 to 42	satisfactory	satisfactory, but accident study required
D	43 to 56	operating nearcapacity	nearcapacity and accident study required
E	57 to 70	at capacity At signals, incidents will cause excessive delays.	at capacity, requires other control mode
F	Greater than 71	unsatisfactory with excessive queuing	unsatisfactory with excessive queuing; requires other control mode

Source: Roads and Maritime Guide to Traffic Generating Developments, 2002

3.13.2 Intersection Performance

SIDRA Intersection 7.0 modelling summa rised the existing LOS during the AM and PM peaks for the J enolan CavesRoad and the Quamy Access Road intersection, with the worst average delay goveming the intersection LOS. This is shown below in Table 3.15 and Appendix C in detail.

Table 3.15: Existing Intersection Level of Senvice

Approach	AM Peak LOS		PM Peak LOS	
	Delay (sec/veh)	Level of Senvice	Delay (sec/veh)	Level of Senvice
Jenolan CavesRoad/ Quamy Access Road	12	A	13	A
Great Westem Highway/J enolan CavesRoad	25	B	21	B

Both intersec tions currently operate sa tisfa ctorily at LOS B or better during both the AM and PM peak hours.

3.14 Pedestrians

There are no formal pedestrian footpaths on either side of the road in the vic inity of the subject site. However, pedestrian a ctivity a long J enolan Caves Road and the Quary Access Road is negligible and formal facilities are not wa manted along these roads.

3.15 Bus Services

There are a number of private bus operators with regular bus servic es operating between Mount Victoria, Lithgow and Oberon in the vic inity of the Quamy. These bus operatorsare:

- Blue Mountains Bus Company (school buses)
- Lithgow BusLines (sc hool buses)
- NSW TrainLink.

Regular bus servic es a long J enolan Caves Road are summarised in Table 3.16 below.
Table 3.16: Peak Period Frequency of Bus Services on J enolan Caves Road

Bus Operator	7am to 9am	3pm to 5pm
Lithgow Bus Lines (during peak periods)	2	2
NSW Tra inLink (during peak periods)	2	1
NSW Train Link (during off-peak period)	1	2

A Blue Mounta ins Bus Company school bus also runs a long the Great Westem Highway between Lithgow and the Upper Blue Mounta ins in the moming and aftemoon. Suburbs with schools included in the service are:

- Blackheath
- Blaxland
- Faulc onbridge
- Glenbrook
- Hazelbrook
- Katoomba
- Lapstone
- Lawson
- Leura
- Lithgow
- Mount Riverview
- Mount Victoria
- Springwood
- Wa mimoo
- Wentworth Falls
- Winmalee.

Approximately 60 bus routes service schools within these suburbs before and after school times. There are one to two services per route in the moming and aftemoon periods.

In addition, there are a number of sight-seeing tour buseswhich operate to J enolan Caves along Jenolan Caves Road and within the Blue Mountains. These operate infrequently and during off-peak times.

4 Future Road Transport Environment

Changescan be expected to occurto the operation of the road network currently used by vehic les travelling to and from the Austen Quary which are unrelated to the proposed modific ations, and so would occur regardless of the status of the modified operations. These are discussed in this section, which considers the future road network conditions for the following future assessment years:

- 2022: commencement of monitoring at the intersection of Jenolan Caves Road with Great Westem Highway.
- 2035: Roads and Ma ritime's tra ffic forecast year is up to 2035 for the Great Westem Highway Upgrade project.

It is acknowledged that 2050 is the expiry year under the current approval and would not change under the proposed modific ations. However approved extraction activities may occurfaster under the modified consent due to the increased annual production.

4.1 Background Traffic Growth

The technical paper (Mount Victoria to Lithgow Alliance, 2012b) prepared as part of the assessment process for the works a long the Great Westem Highway presented the following forecasts of expected traffic volumes on the Great Westem Highway near Forty Bends.

Table 4.1: Traffic Forec asts on the Great Westem Highway near Forty Bends (2-way)

Year	Daily (vehicle/day)		AM Peak (vehicle/day)		AM Peak (vehicle/day)	
	Eastbound	Westbound	Eastbound	Westbound	Eastbound	Westbound
2011	3,950	3,950	220	260	350	300
2015	4,200	4,200	230	270	380	320
2022	4,725	4,725	258	305	429	362
2025	4,950	4,950	270	320	450	380
2035	5,900	5,900	320	390	530	450

Source: Mount Victoria to Lithgow Alliance (2012b)
These forecasts suggest that over the period from 2011 to 2035, traffic volumes on the Great Westem Highway are expected to increase by an average of approximately 2 percent peryear. Traffic counts over the six years to 2012 indicate that heavy vehicle movements have been growing at a rate of about 1.3 percent per annum and light vehicle movement have been growing at a rate of about 1.7 percent per annum (Mt Victoria to Lithgow Alliance, 2012c). Therefore, adoption of a 2 percent perannum growth rate for both light and heavy vehic les is therefore considered to be robust.

Based on the existing traffic volumes on the Great Westem Highway at various loc ations presented in Section 3.2, and the daily and peak hourly forecasts for the Great Westem Highway at Forty Bends (Table 4.1) from the Roads and Maritime works for the highway upgrade program, two way traffic volumes at locations on the Great Westem Highway have been developed. Table 4.2 presents the daily and peak hour forecasts for the same forec ast years up to 2035, as well as interpolated results for 2022.

Table 4.2: Traffic Forec asts on the Great Westem Highway near Forty Bends (2-way)

Location	2011 AB	2015 A	2022	2025 A	2035 A
Daily (vehic les/ day)					
Forty Bends	7,900	8,400	9,450	9,900	11,800
Hartley	8,800	9,400	10,590	11,100	13,200
Little Hartley	10,400	11,100	12,500	13,100	15,600
Victoria Pass	14,000	14,900	16,790	17,600	21,000
AM Peak (vehic les/ hour)					
Forty Bends	480	500	563	590	710
Hartley	530	560	630	660	790
Little Hartley	630	660	744	780	940
Victoria Pass	850	890	1,002	1,050	1,260
PM Peak (vehic les/ hour)					
Forty Bends	650	700	791	830	980
Hartley	720	780	885	930	1,100
Little Hartley	860	930	1,049	1,100	1,300
Victoria Pass	1,150	1,240	1,408	1,480	1,740

A RMS daily forecasts
B RMS peak hourly forecasts

A number of reports prepared by orfor Roads and Maritime (GHD 2006, Transport \& Urban Planning 2009, Roads and Traffic Authority 2006, a nd GHD 2002) document traffic forec asts along the Great Westem Highway to the east of the Austen Quary. It is noted that the reports were prepared between 2002 and 2009, a nd so predate the forecasts in Table 4.1, a nd the observed growth rates of 1.3 and 1.7 percent per annum for light and heavy vehicles respectively disc ussed above. The reports suggested that the likely traffic growth on the Great Westem Highway between Woodford a nd Wentworth Falls would be about 2.2 to 2.4 percent per annum until 2030 . The data has been interpolated or extrapolated where required to generate forecasts for the same future
time horizons as in Table 4.2. An extract showing the original forecasts from each of the reports are presented in Appendix D.

Notably, these are general forecasts which do not specific ally consider the Austen Quamy traffic or the relative levels of a ctivity at the Quary. It is considered that these forecasts in Table 4.2 should be assumed to relate to average day traffic associated with the Austen Quary, i.e. generation of 260 truck trips per day in 2017 on the Great Westem Highway east of J enolan Caves Road assuming all Quamy traffic head east. Furthemore, it is assumed that these general forecasts assume the transport task of the Austen Quary would not change signific antly overtime.

4.2 Changes to the Road Network

As of December 2017, Roads and Maritime hascompleted detailed design of the Katoomba to Mount Vic toria safety upgrade and expects to start construction in mid 2018. Generally, works involve reduced speed limits in towns, upgrade of various intersections, widening sealed road shoulders, sight distance improvement and installation of safety ba miers.

Pedestrian and cyclist facilities would also be upgraded along the Great Westem Highway, with the provision of new or upgraded pedestrian crossing facilities, footpath and off road shared paths at various locations.

4.3 Austen Quamy Traffic Generation

4.3.1 Heavy Vehicles

Hy-Tec Industriesare proposing to increase annual qua my production and associated despatch limits compared to existing limits, as shown in Table 4.3.

Table 4.3: Changes in Annual Product and Truck Despatch Limits

Limit	CurentApproval	Proposed
Annual production	1.1 Mtpa	1.6 Mtpa
Daily maximum laden truck loads despatched	250	300
Daily average laden truck loads despatched	150	200

The increased transport of quamy products from 1.1 to 1.6 Mtpa would result in an increase of the maximum daily laden trucks from the site to 300 and the average daily la den trucks from the site to 200. Given recent improvements in truck capacity and safety, Hy-Tec Industries is comfortable that the proposed traffic levels will be suffic ient to manage the larger quantity of materials produced.

As these daily figures are averaged over the total number of despatch days in a ny calendar month, the actual da ily loads would fluctuate throughout the year. Based on 2016-2017 weighbridge data, it is estimated that a maximum of 480 truck trips (240 trucksloads) would occur on a peak day on a weekday on a pro-rata basis, which are estimated to occur less than 10 days per year. For Saturdays, it is estimated that up to 260 truck trips (130 trucks loads) would occur on a peak day that would occur for one to two Saturdays over the year.

On days when there are higher numbers of truck trips made, these trips include a number of smaller rigid vehic les with lower capacity rather than the larger a rtic ulated vehicles.

The above traffic generation estimates a re considered conservative for peak future conditions. The assessment which follows is based on this peak day activity, i.e. 480 truck trips on a weekday and 260 truck trips on a Saturday, with the majority of c ustomers located in the Sydney metropolitan a rea where 32.5Ttrucks would typically be used. For deliveries to local areas, smaller trucks with a capacity of 15T would be used. Conservatively, the assessment has been assumed 90 percent of the Quary trucks are artic ulated or B-double trucks, a nd the remaining 10 percent are rigid trucks. With a combination of Sydney and local customers, on a peak day there would be up to 300 loads perday, generating 600 truck trips perday as shown in Table 4.3. This higher trip generation is likely to occur less than 10 days peryear.

4.3.2 Light Vehic les

Hy-Tec Industriesisalso proposing to commence product despatch earier in the day to a void the majority of delays in the AM peak period. Instead of the current 5.00am start, it is proposed to start one hour earlier on weekdays. As such, the proposed hours of loading and despatch are:

- 4.00am to 10.00pm Monday to Friday
- 5.00am to 3.00pm Saturdays
- At no time on Sundays or public holidays.

Based on the above operating hours, the site would generate an average of 17 laden trucks per hour during the 18 operating hours on a weekday. The hourly distribution of the trucks has been derived using the existing profile (Figure 3.5) as a base, with adjustment made to the proposed operating hours. Notably, the on-site loading capacity is up to 20 trucks per hour, equating to three minutes pertruck, therefore it is a nticipated that the hourly traffic generation would not exceed 20 laden trucks per hour.

The increase in product despatch would require up to nine additionalemployees, and is assumed to increase the number of visitors a nd contactors visiting the site each day,
which would increase the light vehicle traffic generation. The number of workers, contractors and visitors are shown as follows in Table 4.4.

Table 4.4: Light Vehicle Traffic Generation

Light vehicle trip type	Weekday	Weekend	Note
Worker or regular contractors	16-day shift workers resulting in 32 light vehicle trips 10 night shift workers resulting in 20 light vehicle trips	16 day shift workers resulting in 32 light vehicle trips	On weekdays, 2 workers generally start at 5.00am with the rest a miving before 6.00 am . The day shift finishes as 5.00 pm with those workers that started at 5.00 am leaving around 4.00 pm . The same applies to Saturday, except the day shift starts one hourlater than a weekday. No night shift on Saturdays. The night shift starts between 2.00 pm and 3.00 pm and continues to 10.00 pm . Up to 5 workers will stay on for maintenance work until 2.00am but may be aslate as 6.00am.
Visitor or contractor	10 visitors or contractors resulting in 20 light vehicle trips	4 visitors or contractors resulting in 8 light vehicle trips	Visitors and contractors a mive at the site throughout the working hours, a veraging up to 2 trips(two-way) perhour on a weekday and a Saturday.

4.3.3 Total Traffic Generation

Table 4.5 provides a summary of the future peak weekday and Saturday traffic generated by the Austen Quary and its distribution on Jenolan Caves Road during the peak hours previously identified. This assumes that the Quary traffic is spread through the day with a maximum of 40 heavy vehicles (2-way) perhour in Quary Access Road based on its maximum product despatch levels per hour.

Table 4.5: Peak Daily Two Way Austen Quary Traffic Year (vehic les/ hour)

Time	Jenolan Caves Road North of Quany Access Road		Jenolan Caves Road South of Quary Access Road		Quary Access Road				
	Light	Heavy	Total	Light	Heavy	Total	Light	Heavy	Total
Weekday									
$4.00-5.00$	2	12	14	0	0	0	2	12	14
$5.00-6.00$	16	14	30	0	0	0	16	14	30
$6.00-7.00$	5	18	23	0	0	0	5	18	23
$10.00-11.00$	2	39	41	0	0	0	2	39	41
$11.00-12.00$	2	38	40	0	0	0	2	38	40
$16.00-17.00$	2	40	42	2	0	2	4	40	44

Time	Jenolan Caves Road North of Quany Access Road			Jenolan Caves Road South of Quany Access Road			Quamy Access Road		
	Light	Heavy	Total	Light	Heavy	Total	Light	Heavy	Total
17.00-18.00	8	28	36	8	0	8	16	28	44
Weekday Total (vehicles/day)	48	432	480	26	48	74	74	480	554
Saturday									
5.00-6.00	12	31	43	4	0	4	16	31	47
6.00-7.00	0	28	28	0	0	0	0	28	28
10.00-11.00	1	31	32	1	0	1	2	31	33
11.00-12.00	1	30	32	1	0	1	2	30	32
14.00-15.00	1	6	7	1	1	1	2	6	8
Saturday Total (vehicles/day)	44	234	278	0	26	26	44	260	304

Peak day with Austen Quamy operating at 1.6 Mtpa that would only be likely to occur on less than 10 days peryear.

The above traffic volumes include two-way Quary truck trips (not by laden loads).

4.4 Future Traffic Volumes

4.4.1 Year 2022

Figure 4.1 and Figure 4.2 depict the indicative peak daily traffic generation superimposed on the 2022 baseline traffic volume, with a traffic growth of 2 percent per a nnum a pplied to the non-Quarry traffic in J enolan Caves Road (north of the Quamy Access Road). This a ssumes that any growth in non-Quary traffic would occur a cross the day in proportion to the existing traffic volumes, i.e. a 10 percent increase in total weekday traffic would result in a 10 percent increase in hourly traffic foreach and every hour of the day. In reality, additional traffic is more likely to spread through the day, lengthening the time over which peak volumes oc cur rather than proportionally increasing the peak volume.

It is assumed that the weekday traffic currently generated by the adjacent leased land would continue in the future while the Austen Quary operates, and would increase at the same rate of 2 percent per annum as the other traffic not associated with the Austen Qua my operations.

Figure 4.1: Peak Daily Traffic Generation on Weekdays (2022) - 2-Way Movements

Figure 4.2: Peak Daily Traffic Generation on Saturdays (2022) - 2-Way Movements

The hourly profiles in Figure 4.1 and Figure 4.2 show that the traffic generation generally decreases during the AM and PM peak hours and spreads across the day similar to the existing hourly distribution. The transportation load eases one to two hours before the end of the permitted transport hours. A small number of light vehic les would leave the site after the night shift (10.00pm).

Table 4.6 demonstrates that with the combined effects of background growth and peak day activity at the Austen Quamy, J enolan Caves Road would camy up to a pproximately 1,830 vehic les per day on a weekday and 1,950 vehic les perday on a Sa turday to the north of Austen Quamy in 2022.

Table 4.6: Peak Day Two Way Traffic in 2022 (vehic les/ hour)

Time	Jenolan Caves Road North of Quary Access Road			Jenolan Caves Road South of Quany Access Road			Quamy Access Road		
	Light	Heavy	Total	Light	Heavy	Total	Light	Heavy	Total
Weekday									
4.00-5.00	25	44	69	4	7	12	2	40	42
5.00-6.00	64	39	104	14	10	23	17	40	57
10.00-11.00	99	52	150	54	28	82	3	33	36
11.00-12.00	86	47	134	51	24	75	3	30	33
16.00-17.00	81	33	114	65	14	79	5	22	27
17.00-18.00	75	25	100	67	11	78	17	17	34
Weekday Total (vehicles/day)	1,155	673	1,828	743	283	1,027	84	480	564
Saturday									
5.00-6.00	50	30	80	9	6	15	17	31	48
6.00-7.00	47	31	79	24	9	33	0	28	28
10.00-11.00	122	39	162	106	10	116	2	31	33
11.00-12.00	141	40	181	109	12	120	2	30	32
14.00-15.00	117	21	138	117	15	132	2	6	8
Saturday Total (vehicles/day)	1,555	397	1,952	1,347	166	1,512	54	260	314

Peak day with Austen Quamy operating at 1.6 Mtpa that would only be likely to occur on less than 10 days peryear.

Note: light vehicles in Quarm Access Road include traffic to and from the neighbouring property.
Table 4.7 presents indic ative future traffic volumes on the Great Westem Highway in 2022. These are based on the forecastson the Great Westem Highway presented by

Roads and Maritime, and adjusted to reflect the increased truck trips, work/ contractor vehicle trips associated with the Quamy operation. The Quamy products transported to the east are assumed to travel to the Sydney metropolitan area, i.e. through the Blue Mountains, via the Great Westem Highway. There are a small number of truck trips assigned to the west for local customer deliveries via the Great Westem Highway. It has been assumed that 90 percent of Quarry trucks travel to/from east via Great Westem Highway, with the rema ining 10 percent travel to/from west via Great Westem Highway.

Table 4.7: Indicative Peak Day Traffic Volumes on the Great Westem Highway 2022 (2-way)

Location	AM Peak (vehicles/ hour)	PM Peak (vehicles/ hour)	Daily (vehicles/ day)
Meadow Flat	614	778	9,512
Hartley	557	730	9,732
Mount Victoria	763	949	12,647
Blackheath	801	1,054	13,895
Forty Bends	579	796	9,656
Hartley	646	890	10,796
Little Hartley	760	1,054	12,706
Victoria Pass	1,018	1,413	16,996
Medlow Bath	1,226	1,227	18,250
Leura	2,083	2,294	32,791
Bulla bura	1,801	1,851	25,410
Faulconbridge	2,348	2,497	31,198

Based on the Roads and Maritime traffic data (Table 3.1), on average heavy vehicles made up 20 percent of total traffic on the Great Westem Highway in 2017. The contribution of the Quamy traffic on the Great Westem Highway is summarised in Table 4.8 for a peak day in 2022.

Table 4.8: Indicative Peak Day Heavy Vehicles on the Great Westem Highway 2022 (2-way)

Location	Peak Hour (heavy vehicles/ hour)		Daily (heavy vehicles/day)	
	Total	Quamy	Total	Quany
Meadow Flat	156	2	1,902	48
Hartley (west of Jenolan CavesRoad)	146	2	1,946	48
Mount Victoria	190	20	2,529	432
Blackheath	211	20	2,779	432
Forty Bends	159	20	1,931	432
Hartley	178	20	2,159	432
Little Hartley	211	20	2,541	432
Victoria Pass	283	20	3,399	432
Medlow Bath	245	20	3,650	432
Leura	459	22	6,558	432
Bulla burra	370	22	5,082	432
Faulconbridge	499	20	6,240	432

Austen Quamy operating at 1.1Mtpa that would only be likely to oc cur on less than 10 days per year. Assumes background weekday traffic is 20 percent heavy vehicles.

These results demonstrate that the contribution of the Austen Quary to total heavy vehic les on the Great Westem Highway on peak days would dec rease through the Blue Mounta ins to the east. The overall proportion of heavy vehic les on the Great Westem Highway would remain at a similar level to the existing situation, with an increase from 20 percent to approximately 21 percent heavy vehicles on the peak days of activity at the Austen Quamy, that would only be likely to occur on less than 10 days per year.

4.4.2 Year2035

Under the current development consent, the Austen Quary will continue to operate until 2050, after which it would be dec ommissioned. However, it is acknowledged that completion of approved extraction activities may occur faster under the modified consent.

The a ssessment year is beyond the typic al 10-year planning horizon required by Roads and Maritime, and is therefore ensure a robust review of the potential future traffic on key routes. As above, a growth rate of 2 percent per annum has been applied, which is
consistent with forec asts presented by Roads and Maritime on the Great Westem Highway (Table 4.2) up to year 2035.

Figure 4.3 and Figure 4.4 depict the indicative peak daily traffic generation superimposed on the 2035 baseline traffic volume, with a traffic growth of 2 percent per annum applied to the non-Quamy traffic in Jenolan CavesRoad (north of the Quamy Access Road).

It is assumed that the weekday traffic currently generated by the adjacent leased land would continue in the future while the Austen Quary operates, and would increase at the same rate of 2 percent perannum asthe other traffic not associated with the Austen Quary operations.

Figure 4.3: Peak Daily Traffic Generation on Weekdays (2035) - 2-Way Movements

Figure 4.4: Peak Daily Traffic Generation on Saturdays (2035) - 2-Way Movements

Traffic generation associated with the Quary activities remain unchanged from the 2022 assessment. The only increase in traffic is the background traffic unrelated to Qua my activities.

Table 4.9 provides a summary of the resulting traffic volumes in J enolan Caves Road and the Quary Access Road for weekday and Saturday conditions for the long term scenario (year 2035).

This a ssumes that any growth in non-Qua my traffic would occur across the day in proportion to the existing traffic volumes, i.e. a 36 percent inc rease in total weekday traffic would result in a 36 percent increase in hourly traffic foreach and every hour of the day. In reality, additional traffic is more likely to spread through the day, lengthening the time over which peak volumesoccur rather than proportionally increasing the peak volume. It has been assumed all Quary trucks travel to/from east via Great Westem Highway.

Table 4.9: Peak Day Two Way Traffic in 2035 (vehic les/ hour)

Time	Jenolan Caves Road North of Quamy Access Road			Jenolan Caves Road South of Quary Access Road			Quamy Access Road		
	Light	Heavy	Total	Light	Heavy	Total	Light	Heavy	Total
Weekday									
4.00-5.00	31	45	76	5	9	14	2	40	42
5.00-6.00	76	39	115	17	12	29	17	40	57
10.00-11.00	121	56	178	67	34	101	3	33	36
11.00-12.00	106	51	158	63	30	93	3	30	33
16.00-17.00	99	36	135	80	17	98	5	22	27
17.00-18.00	90	27	118	81	13	95	17	17	34
Weekday Total (vehicles/day)	1,413	718	2,132	916	350	1,266	84	480	564
Saturday									
5.00-6.00	58	29	88	11	7	18	17	31	48
6.00-7.00	58	32	91	29	12	41	0	28	28
10.00-11.00	151	41	192	131	12	143	2	31	33
11.00-12.00	173	43	216	135	14	149	2	30	32
14.00-15.00	145	25	169	144	18	163	2	6	8
Saturday Total (vehicles/day)	1,915	429	2,344	1,663	205	1,868	56	260	316

Peak day with Austen Quamy operating at 1.6 Mtpa that would only be likely to occur on less than 10 days peryear.

Note: light vehicles in Quary Access Road include traffic to and from the neighbouring property.

Table 4.9 demonstrates that with the combined effects of background growth and the Austen Quarm operations, J enolan Caves Road would camy up to approximately 2,140 vehic les perday on a weekday and 2,350 vehic les per day on a Saturday to the north of Austen Quary in 2035.

Table 4.10 presents indic ative future traffic volumes on the Great Westem Highway in 2035. These are based on the forecasts on the Great Westem Highway presented by Roads and Maritime.

Table 4.10: Indicative Peak Day Heavy Vehic les on the Great Westem Highway 2035
(2-way)

Location	AM Peak (vehicles/ hour)	PM Peak (vehicles/ hour)	Daily (vehicles/day)
Meadow Flat	754	967	11,178
Hartley (west of Jenolan CavesRoad)	680	908	11,450
Mount Victoria	935	1,178	15,054
Blackheath	982	1,308	16,597
Forty Bends	726	985	12,006
Hartley	806	1,105	13,406
Little Hartley	956	1,305	15,806
Victoria Pass	1,276	1,745	21,206
Medlow Bath	1,514	1,522	22,446
Leura	2,573	2,841	40,424
Bullaburra	2,225	2,294	31,298
Faulconbridge	2,901	3,093	38,454

Table 4.10 indic ates that traffic volumes on the Great Westem Highway would be expected to increase to a pproximately 21,200 vehic les per day at Victoria Pass in 2035 a nd in the order of 38,500 vehic les per day at Fa ulc onbridge.

Assuming that the aforementioned general forecasts of total traffic on the Great Westem Highway included an average of 20 percent heavy vehicles on the Great Westem Highway, the contribution of the Quary to heavy vehicles on the Great Westem Highway on a peak day in 2025 is summa rised in Table 4.11.

Table 4.11: Indic ative Peak Day Heavy Vehic les on the Great Westem Highway 2035 (2-way)

Location	Peak Hour (heavy vehic les/ hour)		Daily (heavy vehic les/ day)	
	Total	Quany	Total	Quany
Meadow Flat	193	2	2,236	48
Hartley (west of Jenolan CavesRoad)	182	2	2,290	48
Mount Victoria	236	20	3,011	432
Blackheath	262	20	3,319	432
Forty Bends	197	20	2,401	432
Hartley	221	20	2,681	432
Little Hartley	261	20	3,161	432
Victoria Pass	349	20	4,241	432
Medlow Bath	304	20	4,489	432
Leura	568	22	8,085	432
Bulla burra	459	22	6,260	432
Faulc onbridge	619	20	7,691	432

Austen Quary operating at 1.6Mtpa that would only be likely to occur on less than 10 days per year.
These results demonstrate that the contribution of the Austen Quary to total heavy vehic les on the Great Westem Highway on peak days would dec rease through the Blue Mountains to the east. The overall proportion of heavy vehic les on the Great Westem Highway would remain at a similar level to the existing situation, with an increase from 20 percent to approximately 21 percent heavy vehicles on the peak days of activity at the Austen Quary, that would only be likely to occur on less than 10 days per year.

4.5 Future Roadway Capacity and Efficiency

4.5.1 Year 2022

As a general indic ation of the effects of background growth on the Level of Service experienced by drivers along J enolan Caves Road, the PTSF has been recalculated for a peak day for year 2022 - the commencement year for monitoring the Jenolan Caves Road intersection with Great Westem Highway. The PTSF results a re summarised in Table 4.12.

Table 4.12: PISF and Levels of Service (2022)

Location	AM Peak Hour				PM Peak Hour			
	Hour Starting	$\begin{gathered} \text { pc/hr } \\ \text { (2-way) } \end{gathered}$	PISF	LOS	Hour Starting	$\begin{gathered} \text { pc/hr } \\ \text { (2-way) } \end{gathered}$	PISF	LOS
Weekday								
Jenolan Caves Road North of Quary Access Road	10am	192	38.5	A	12pm	152	35.5	A
Jenolan Caves Road South of Quary Access Road	10am	104	32.8	A	2pm	96	32.1	A
Saturday								
Jenolan Caves Road North of Quary Access Road	11am	213	42.1	B	2pm	156	36.8	A
Jenolan Caves Road South of Quary Access Road	10am	122	35.2	A	1pm	131	35.9	A

These results indicate that the traffic volumes on J enolan Caves Road would remain suffic iently low with background growth in traffic that drivers would continue to experience good levels of service when driving along it on both a weekday and Sa turday with peak activity at the Austen Quary.

Along the Great Westem Highway, a number of complex factors will influence the capacity and perceived service levels experienced by drivers. Drivers' expectations would vary signific antly between sections of road within Blue Mounta ins villages (and from one village to a nother) a nd those between the villages. Austroads (2013) presents a general guide to Levels of Service for unintemupted traffic flow on multi-lane roads, i.e. outside of the influences of signals and intersections. The LOS guide is based on travel speedsand vehicle densities to develop thresholds for maximum service flow rates per lane forvarious speed environments. These have been compared with the estimated traffic volumes presented in Table 4.7 to provide a guide to expected future LOS during peak hours along the Great Westem Highway. This a ssumes vehic les travel at a free-flow speed of 8 to $10 \mathrm{~km} / \mathrm{h}$ above the posted speed limit, as suggested by Austroads (2017).

Table 4.13: Indicative Future Peak Day Levels of Senvice on the Great Westem Highway 2022 (2-way)

Location	Peak Hour (vehicles/ hour)	Number of Lanes	Speed Limit	Level of Senvice
Meadow Flat	778	3	90	A
Hartley (west of Jenolan Caves Road)	730	3	90	A
Mount Victoria	949	3	90	A
Blackheath	1,054	3	90	A

Location	Peak Hour (vehicles/hour)	Numberof Lanes	Speed Limit	Level of Senvice
Forty Bends	796	3	80	A
Hartley	890	3	90	A
Little Hartley	1,054	3	90	A
Victoria Pass	1,413	3	80	A
Medlow Bath	1,227	4	80	B
Leura	1,851	4	70	C
Bullabura	2,497		3	80
Faulc				

4.5.2 Year 2035

As an indic ation of the effects of longertem background growth on the Level of Service experienced by drivers along J enolan Caves Road, the PTSF has been recalculated for a weekday and Saturday in 2035. The results a re summarised in Table 4.12.

Table 4.14: PISF and Levels of Service (2035)

Location	AM Peak Hour				PM Peak Hour			
	Hour Starting	$\begin{gathered} \text { pc/hr } \\ \text { (2-way) } \end{gathered}$	PISF	LOS	Hour Starting	$\begin{gathered} \text { pc/hr } \\ \text { (2-way) } \end{gathered}$	PISF	LOS
Weekday								
Jenolan Caves Road North of Quary Access Road	10am	223	40.8	B	12pm	175	37.2	A
Jenolan Caves Road South of Quary Access Road	10am	129	34.7	A	2pm	118	33.9	A
Saturday								
Jenolan Caves Road North of Quary Access Road	11am	250	44.7	B	2pm	190	39.4	A
Jenolan Caves Road South of Quary Access Road	10am	151	37.4	A	1pm	162	38.3	A

These results indicate that the traffic volumes on Jenolan Caves Road would remain suffic iently low with background growth in traffic that drivers would continue to experience good levels of service when driving along it on both a weekday and Saturday in year 2035.

Indic ative Levels of Service along the Great Westem Highway in 2035 are presented in Table 4.15, based on the highest estimated peak hour traffic volumes presented in Table 4.10 and provide a guide to expected future Level of Service during peak hours along the Great Westem Highway.

Table 4.15: Indicative Future Peak Day Levels of Service on the Great Westem Highway 2035 (2-way)

Location	Peak Hour (vehic les/ hour)	Number of Lanes	Speed Limit	Level of Senvice
Meadow Flat	967	3	90	A
Hartley (west of Jenolan Caves Road)	908	3	90	A
Mount Victoria	1,178	3	90	A
Blackheath	1,308	3	90	A
Forty Bends	985	3	80	A
Hartley	1,105	3	90	A
Little Hartley	1,305	3	90	A
Victoria Pass	1,745	3	60	B
Medlow Bath	1,522	3	90	A
Leura	2,841	4	80	C
Bulla burra	2,291	4	80	B
Faulc onbridge	3,093	4	70	C

The results demonstrate that in 2035, levels of service along the Great Westem Highway are expected to be C or better.

4.6 Future Intersection Operation

4.6.1 Year 2022

The weekday peak hour operating characteristics of the surveyed intersections have been reassessed to quantify the future conditions for year 2022 when the monitoring commences at the intersection of J enolan Caves Road with Great Westem Highway for any necessary intersection upgrade. The results are summarised in Table 4.16, and the results by movement are presented in Appendix C. As noted, the forecast tuming movements at the intersections assume that growth in background traffic will increase the volume in each hour of the day pro rata to the daily increase. It has been assumed that 90 percent of Quary trucks travel to/from east via Great Westem Highway, with
the rema ining 10 percent travel to/from west via Great Westem Highway. The truck composition consists of 90 percent articula ted/ B-Double trucks and 10 percent rigid trucks.

Table 4.16: Intersection Level of Service (2022)

Approach	AM Peak LOS		PM Peak LOS	
	Delay (sec/veh)	Level of Service	Delay (sec/veh)	Level of Service
Jenolan Caves Road/Access Road	14	A	14	A
Great Westem Highway/J enolan CavesRoad	33	C	30	C

Peak day with the Austen Quamy operating at 1.6 Mtpa, that would only be likely to occur on less than 10 daysperyear

The results in Table 4.16 indicate that the intersections would operate satisfactorily at LoSC or better. At the intersection of the Great Westem Highway and J enolan Caves Road, the movements with the highest average delay per vehicle would be the right tum out of Jenolan Caves Road during the moming peak, and the left tum out of J enolan Caves Road during the evening peak.

4.6.2 Year 2035

The weekday peak hour operating characteristic of the surveyed intersections have been reassessed to quantify the future conditions in year 2035. The results a re summarised in Table 4.17, a nd the results by movement are presented in Appendix C. As noted, the forec ast tuming movements at the intersections assume that growth in background traffic will increase the volume in each hour of the day pro rata to the daily inc rease. It has been assumed that 90 percent of Quary trucks travel to/from east via Great Westem Highway, with the remaining 10 percent travel to/from west via Great Westem Highway. The truck composition consists of 90 percent artic ula ted/BDouble trucks and 10 percent rigid trucks.

Table 4.17: Intersection Level of Service (2035)

Approach	AM Peak LOS		PM Peak LOS	
	Delay (sec/veh)	Level of Service	Delay (sec/veh)	Level of Service
Jenolan Caves Road/Access Road	15	B	15	B
Great Westem Highway/J enolan CavesRoad	50	D	47	D

$\overline{\text { Peak day with the Austen Quary operating at } 1.6 \text { Mtpa that would only be likely to occur on less than } 10 \text { days }}$ peryear

The results in Table 4.15 indicate that the intersections would operate satisfactorily in the longer term, noting that Level of Service D is the upper limit for acceptable Level of Service. At the intersection of the Great Westem Highway and J enolan Caves Road,
the movements with the highest average delay pervehicle would be the right tum out of J enolan Caves Road during the moming peak, and the left tum out of Jenolan Caves Road during the evening peak. It is noted that the volume tuming left during the evening peak hour is only 14 vehic les per hour, thus this delay would be experienced by only a small number of vehicles. A signific ant proportion of the reported delays is the forec ast delay associated with physically negotiating the tum rather than the delay waiting for a gap in the traffic.

4.7 Maximum Product Despatch Levels (300 Truck Loads)

Hy-Tec estimates that an appropriate maximum limit to la den truck despatch from the Quary would be 300 laden truck loads per day, or 600 daily truck trips. This maximum trip generation would only be likely to occur less than five days per year based on the heavy vehicle a rival pattems from the existing weighbridge data, a nd therefore it is not considered a reasonable basis for assessment of the typical implic ations of the proposal, however its implic ations a re broadly assessed below.

4.7.1 Year 2022

The maximum product despatch levelson a weekday would generate an additional 120 truck trips per day on J enolan Caves Road above that a ssessed ea rier (480 truck trips). It has been assumed that a maximum of 20 Quamy trucks per hour would be generated by the Quary during the AM and PM peak hours. The resulting Levels of Service experienced a long Jenolan Caves Road east of Austen Quary on a weekday are summa rised in Table 4.18.

Table 4.18: PISF and Levels of Service (Maximum Operations 2022)

Location	AM Peak Hour				PM Peak Hour			
	Hour Starting	pc/hr (2-way)	PISF	LOS	Hour Starting	$\mathbf{p c} / \mathbf{h r}$ (2-way)	PISF	LOS
Weekday								
Jenolan Caves Road North of Quamy Access Road	$10 a m$	205	39.5	A	12 pm	170	36.9	A
Jenolan Caves Road South of Quamy Access Road	$10 a m$	104	32.8	A	$2 p m$	96	32.1	A

The results demonstrate that drivers on J enolan Caves Road would continue to experience good levels of service on the very busiest daysthat would only be likely to occur on less than five days per yearat the Austen Quary.

For the purpose of a ssessing intersection performance, it has been assumed that all Quamy trucks travel to/from east via Great Westem Highway, comprising 90 percent artic ulated/ B-Double trucks and 10 percent rigid trucks. The predicted level of service for the relevant intersections is presented in Table 4.19.

Table 4.19: Intersection Level of Senvice (Maximum Operations 2022)

Approach	AM Peak LOS		PM Peak LOS	
	Delay (sec/veh)	Level of Service	Delay (sec/veh)	Level of Senvice
J enolan Caves Road/ Quamy AccessRoad	14	A	14	A
Great Westem Highway/J enolan CavesRoad	34	C	32	C

Peak day with the Austen Quamy operating at 1.6 Mtpa that would only be likely to occur on less than five days peryear

The results demonstrate that the intersection would operate satisfactorily on the busiest days that would only be likely to occur on less than five days per year in 2022.

4.7.2 Year2035

The maximum product despatch levelson a weekday would generate an additional 120 truck trips per day on Jenolan Caves Road above that assessed forpeak operations (Section 4.6). It has been assumed that a maximum of 20 Quary trucks per hour would be generated by the Quary. The resulting Levels of Service experienced along Jenolan Caves Road east of Austen Quarm on a weekday in 2035 are summarised in Table 4.20.

Table 4.20: PISF and Levels of Service (Maximum Operations 2035)

Location	AM Peak Hour				PM Peak Hour			
	Hour Starting	pc/hr (2-way)	PISF	LOS	Hour Starting	pc/hr (2-way)	PISF	LOS
Weekday								
Jenolan Caves Road North of Qua m Access Road	$10 a \mathrm{~m}$	235	41.7	B	12 pm	193	38.6	A
Jenolan Caves Road South of Qua my Access Road	$10 a \mathrm{~m}$	129	34.7	A	$2 p m$	118	33.9	A

The results demonstrate that drivers on J enolan Caves Road would continue to experience good levels of service on the very busiest days that would only be likely to occur on less than five days per year at the Austen Quary in 2035.

The results of the a nalysis are summarised in Table 4.21. It has been assumed that all Quary trucks travel to/from east via Great Westem Highway, comprising 90 percent a rtic ulated/ B-Double trucks and 10 percent rigid trucks.

Table 4.21: Intersection Level of Senvice (Maximum Operations 2035)

Approach	AM Peak LOS		PM Peak LOS	
	Delay (sec/veh)	Level of Service	Delay (sec/veh)	Level of Senvice
J enolan Caves Road/Quamy AccessRoad	15	B	16	B
Great Westem Highway/J enolan CavesRoad	62	E	84	F

Peak day with the Austen Quamy operating at 1.6 Mtpa would only be likely to occur less than five days per year

The results demonstrate that whilst the Quary Access Road intersection would operate satisfac torily on the busiest days, the Great Westem Highway intersection with J enolan Caves Road is predic ted to operate at LoSE to F in 2035 when the Quary is operating at maximum laden truck despatch levels (that would only likely be occured less than five days per year). This indic ates the intersection would not have sufficient capacity to accommodate the maximum number of Quary trucks tuming right from J enolan Caves Road into the Great Westem Highway during the AM and PM peak hours due to the background traffic growth in 2035.

4.7.3 Sensitivity Testing

A sensitivity test was undertaken to determine what year is predicted to trigger a LoSE at the Great Westem Highway intersection with J enolan Caves Road, given a maximum of 20 Quary trucks would be generated by the Quary and travel in the direction of Sydney during the AM and PM peak hours. The truck composition consists of 90 percent artic ulated/ B-Double trucks and 10 percent rigid trucks. The results of the a nalysis are summa rised in Table 4.22.

Table 4.22: Intersection Level of Service (Sensitivity Test)

Intersection	Year	AM Peak LOS		PM Peak LOS	
		Delay (sec/veh)	Level of Service	Delay (sec/veh)	Level of Senvice
Great Westem Highway/J enolan Caves Road	2024	46	D	54	D
	2025	47	D	58	E
	2028	53	D	70	E

Peak day with the Austen Quamy operating at 1.6 Mtpa would only be likely to occur on less than five days peryear

Table 4.22 shows that by 2025, the intersection performance is predicted to reduce to LoSE at the Great Westem Highway intersection with J enolan Caves Road in the PM peak and 2029 in the AM peak, given the maximum number of Quary trucks would be
generated by the Quamy a nd travel in the direction of Sydney during the AM and PM peak hours.

4.8 Intersection Upgrade

The concept design of the Mount Victoria to Lithgow Great Westem Highway Upgrade included a grade separated interchange at the Great Westem Highway with J enolan Caves Road (Figure 4.5) to replace the at-grade priority controlled intersection.

It is acknowledged that the subject intersection was upgraded in 2016 to provide better tuming la ne and overta king facilities (Section 3.1.3) a s an at-grade priority controlled intersection.

At this stage, the intention for a ny future upgrade of this intersection is unknown. However, the provision of an underpass would signific antly reduce the delay that drivers would experience when travelling from the side road into the Great Westem Highway and improve safety with reduced points of conflict.

It is also noted that Austen Quary will be in disc ussion with Roadsand Maritime aspart of the ongoing monitoring of the Quary and the intersection performance. As such, the truck numbers and traffic growth will be monitored to allow the performance of the intersection to be monitored to ensure the successful operation of the Quary.

Hy-Tec proposesto retain its commitment to monitoring the performance of the intersection of the Great Westem Highway with J enolan Caves Road for 2022. It should be noted that it is in the interest of Hy-Tec that the ongoing performance of this intersection is reta ined.

Figure 4.5: Concept Design for Intersection Upgrade

Source: Roads and Maritime Great Westem Highway Upgrade Mount Victoria to Lithgow, Concept Design Completion Report, April 2013 - Sheet 7

4.9 Future Pedestrians, Cyc lists and Buses

The expected increase in traffic volumes associated with the Quarry is not expected to result in any signific ant change to the number of pedestrians, cyclists or buses operating in the local region. The number of pedestrians travelling along or acrossJ enolan Caves Road in proximity to the Quary would remain negligible, and simila rly the demand for cyclist activity is not expected to have a signific ant increase in the immediate area. The bus operation is expected to remain at similar levels to the existing, with any future increase in demand to be met by additional servicesoperated by the existing service providers.

The number of truck trips generated by the Austen Quary on a peak day, once spread over the operating hours of the Quary and taking into account Hy-Tec's management of despatch times (Section 3.9), would have a negligible effect on the delays experienced by pedestria ns crossing the Great Westem Highway through the villages of the Blue Mountains, nor on exposure between cyclists and trucks. Hy-Tec's management of despatch times also minimises the potential interaction between Quary traffic and school buses.

4.10 Impacts on Road Safety

The Proposal would result in the continuance of truck movements along the Great Westem Highway, predominantly through the Blue Mountains to and from east of Jenolan Caves Road. This is the most appropriate route for such vehicles, being the major arterial route and an approved B Double route between Sydney and westem NSW. The ongoing upgrading program for the Great Westem Highway is progressively improving the route to meet the current and future road transport demands, with the various upgrades a iming to improve traffic flow and road safety. Construc tion traffic management along the Great Westem Highway would have considered specific needs of heavy vehic les, such as their slower acceleration and braking capabilities.

Hy-Tec's Road Truck Traffic Management Plan aimsto maximise the safety of road users both inside the Quary and on public roads, a nd continued compliance with that Plan will reduce the risk of incidents a ssociated with the Quary trucks.

5 Mitigation Measures

The assessment demonstrates that the levels of service experienced along Jenolan Caves Road are expected to remain acceptable in the short tem with the combined effects of background growth and peak day activity at the Austen Quary.

Hy-Tec proposes to retain the commitment to monitor the operation of the Great Westem Highway intersection with J enolan Caves Road once every two years from 2022 onwards. The monitoring will review the delays and safety of vehic les exiting J enolan Caves Road into the Great Westem Highway, and to what extent the Austen Quary traffic contributes to the demand for this movement.

The modelling results documented in this report will be updated to reflect the ongoing changes based on the surveyed traffic volumes in the future and validate the need to limit Quarry truck levels to mainta in service. It is in the interest of Hy -Tec to ensure that product delivery is occuring efficiently. The results of the intersection performance monitoring would be presented in the annual reporting for the Quary.

Furthemore, the concept design as shown in Figure 4.5 indic ates a possible grade separation for the Great Westem Highway intersection with J enolan Caves Road. This layout has been designed as part of the Mount Vic toria to Lithgow Great Westem Highway Upgrade. The monitoring results recorded by Hy-Tec will be provided to Roads and Maritime Services.

The Hy-Tec driver and vehicle check system standard, Hy-Tec Chain of Responsibility Driver/Vehicle Checks, should continue to apply to all people involved in the various activities consigning; loading; driving; operating a business which controls the use of a commercial vehicle and receiving goods or freight.

The establishment and maintenance of this system has been demonstrated to reduce the number of truck drivers who do not comply with fatigue laws, reducing the nisk of incidents on the transport route. The continuance of this system, together with the Road Truck Traffic Management Plan (Section 2.2), is therefore commended as a means to mitigate potential impacts of the proposal, partic ularly with regard to heavy vehicle driver beha viour.

Heavy vehic les do not appear to contribute to the history of crashes along the route. No additional measures are therefore considered to be warranted along Jenolan Caves Road to accommodate the Proposal.

6 Summary and Conclusions

6.1 Summary

- Hy-Tec Industries is seeking approval to increase the a nnual limit on Quary product despatch from 1.1 to 1.6 Mtpa, by increasing the heavy vehicle deliveries from the Quary site perday. In addition, it is proposed to start the operation one hour earlier from 4.00am (instead of the existing 5.00am) on weekdays.
- Analysis of traffic surveys conducted during February 2017, indic a tes that the key intersections are operating satisfactorily at LOS B or better during the peak hours.
- The existing weighbridge data indicatesthe Quamy is currently operating below its existing production limit (maximum 250 laden truck loads) with a pproximately 130 truckloads per day.
- A review of the history of crashes on the surrounding road network indic ates that the most common crash type involved rear end collisions in the Great Westem Highway and single vehic les losing control in J enolan Caves Road. Heavy vehicles do not appearto be a contributing factorto road crashes. Great Westem Highway is progressively being upgraded in various sections to improve traffic flow and road safety. An upgrade of the Great Westem Highway intersection with J enolan Caves Road completed in late 2016.
- For peak Quarry operations (240 truckloads per day):
- An assessment of the traffic implications of the intensified operation of the Quamy ind ic a tes that levels of service at the key intersections would rema in a cceptable in year 2022 and 2035.
- Quary truck trips would be spread across the day from 4.00am to 10.00pm on weekdays, with more truck trips occuming in early moming (between 4.00am and 7.00am) but less during the AM and PM peak hours, to take advantage of a vailable capacity at the intersection during the off-peak period and consistent with customer demands.
- Mid-block sections in Great Westem Highway and Jenolan Caves Road are expected to operate at LOSC orbetter in both 2022 and 2035.
- The proposed increase to daily trucks in the Great Westem Highway is approximately one percent of the total daily traffic volume.
- For maximum Qua my operations (300 truckloa ds per day):
- An a ssessment of the traffic implications of the intensified operation of the Quamy indicates that levels of service at the key intersec tions would rema in acceptable until year 2024 in the PM peak and 2028 in the AM peak.
- Quary truck trips would be spread across the day from 4.00a m to 10.00pm on weekdays, with 20 truckloads occuring in the AM and PM peak hours.
- Hy-Tec proposesto retain the commitment to monitor the operation of the Great Westem Highway intersection with J enolan Caves Road once every two years from 2022 onwards. The monitoring will review the delays and safety of vehic les exiting Jenolan Caves Road onto the Great Westem Highway, and to what extent the Austen Quarry contributes to the demand for this movement.
- The modelling results doc umented in this report will be updated over time a nd will be used to validate the need to limit Qua my truck levels to mainta in service. It is in the interest of Hy -Tec to ensure that product delivery is oc curring effic iently. The results of the intersection performance monitoring would be presented in the annual reporting for the Quary.
- The possible future grade separation of the Great Westem Highway intersection with J enolan Caves Road under the Great Westem Highway Upgrade program would improve the driving experience from J enolan Caves Road onto the Great Westem Highway via an underpass.

6.2 Conclusions

- Additional traffic associated with peak Quary operations (240 truckloa ds per day) would be accommodated on the surrounding road network with acceptable impacts on the capacity, effic iency and safety of the road network.
- Additional traffic in relation to maximum Quary operations (300 trucks perday) would trigger an unacceptable Level of Service E at the Great Westem Highway intersection with J enolan Caves Road that would only be likely to occur on less than five days per year, due to the background traffic growth in 2025.
- It is recommended that the Great Westem Highway intersection with J enolan Caves Road be monitored after 2022 for its ongoing operation and safety performance.
- It is also noted that the potential future grade separation of the Great Westem Highway intersection with J enolan Caves Road as proposed by Roads and Ma ritime Servic es would provide benefits for vehicles tra velling from J enolan Caves Road onto the Great Westem Highway

7 References

Austroads (2006) Guide to Road Design Part 2: Design Considerations.
Austroads (2013) Guide to Traffic Management Part 3: Traffic Studies and Analysis.

Evans and Peck (2012) Review of Great Westem Highway UpgradesWest of Katoomba - Independent Review.

GHD (2002) Upgrade of the Great Westem Highway - Woodford to Hazelbrook Review of Environmental Factors Volume 1 - Ma in Report.

GHD (2006) The Great Westem Highway Upgrade Wentworth FallsEast Review of Environmental Factors Volume 1 - Main Report.

Mount Victoria to Lithgow Alliance (2012a) Mount Victoria to Lithgow Great Westem Highway Upgra de - Ha rtley Valley safety upgrade Feasibility Report.

Mount Victoria to Lithgow Alliance (2012b) Great Westem Highway Upgrade, Forty Bends Upgrade - Review of Environmental Factors, Tec hnic al Pa per 8: Traffic and Transport.

Mount Victoria to Lithgow Alliance (2012c) Great Westem Highway Upgrade, Concept Design - Concept Report.

Mount Victoria to Lithgow Alliance (2013) Katoomba to Lithgow Great Westem Highway Upgrade - Hartley Valley safety upgrade Community feedback report.

Mount Victoria to Lithgow Alliance (2011) Great Westem Highway Upgrade, Mount Victoria to Lithgow Implementation Strategy.

Roads and Traffic Authority (2002) Guide to Traffic Generating Developments.
Roads and Traffic Authority (2006) Great Westem Highway Upgrade Lawson Section 1A Tra ffic, Transport and Ac cessibility Report.

Roads and Maritime Services website accessed October 2014
http://www.ms.nsw.gov.au/projects/key-build-program/great-westemhighway/access.html.

Sinc la ir Knight Merz (2013) Ha rtley Va lley Sa fety Upgrade Review of Environmental Factors. (Volume 1 Appendix A).

SMEC Australia Pty Ltd (2014) Great Westem Highway - Katoomba to Mount Victoria Road Sa fety Upgra des Potential Treatments Report.

Transport \& Urban Planning (2009) Traffic Study of Proposed Widening of Great Westem Highway, Bullaburra.

Transportation Research Board (2010) Highway Capacity Manual.

Roads and Maritime Services (2013) Katoomba to Lithgow Great Westem Highway Upgrade Hartley Valley safety upgrade Review of Environmental Factors Review of Environmental Factors Appendix A

SMEC Australia Pty Ltd (2014) Great Westem Highway - Katoomba to Mt Victoria Road Safety Upgrades Review of Environmental Factors Appendix K

Roads and Maritime Services (2014) Hartley Va lley to Forty Bends - Sta rt of Work

Roads and Maritime Services (2013) Great Westem Highway Upgrade Forty Bends Review of Environmental Factors Submissions Report

AppendixA

Traffic Surveys

Job No.	: N3001	
Client	:TPP	
Suburb	: Jenolan Caves Road	
Location	: 2. Jenolan Caves Rd/ Hy-tec A	
Day/Date	: Thu, 16th Feb 2017	
Weather	: Fine	
Description	: Classified Intersection Count	
	: Intersection Diagram	
Hour Starting Vehicle Type		
M M	${ }^{\text {All venicles }}$	

Appendix B

Crash Data

Crashid dataset 7131 - Blue Mountains crash data - 1 Jul 2011 to 30 Jun 2016
Note: Data for the 9 month period prior to the generated date of this report are incomplete and are subject to change.
Crash self reporting, including self reported injuries began Oct 2014. Trends from 2014 are expected to vary from previous yrs. More unknowns are expected in self reported data.
Reporting yrs 1996-2004 and 2016 onwards contain uncategorised inj crashes.
Percentages are percentages of all crashes. Unknown values for each category are not shown on this report.

Appendix C

SIDRA Modelling Results

MOVEMENT SUMMARY

Site: 102 [GWH-Jenolan Cave 2017 AM Base]
OWiHJenolan Cave Rd 2035 AM.
Stop (Two.Wara)

Movement Performance - vencies											
10	Mow	Total	N	Stin	Docely	Serrke	Whotics vit	Ditance	Oucked	Stog Ryle ther wh	Spoed
1	12	5	200	0211	242	Los 8	09	102	0.75	079	475
2	T	1	00	0211	137	tos 4	$0 \cdot 9$	102	0.75	079	507
3	82	43	512	0.211	24.6	Lose	0.9	102	0.75	0.79	41.3
Aprosch		49	468	0211	24.4	na	0.9	102	0.75	0.79	42.
East gwh (E)											
4	L2	41	40.7	0.035	0.3	cosa	0.1	18	0.05	0.56	51.7
5	Ti	244	198	0141	00	1054	00	00	000	0.00	799
6	R_{2}	1	00	0001	74	$\underline{\cos A}$	00	00	0.34	0.55	638
Apprasen		285	239	0.141	12	tosa	0.1	18	0.01	008	740
Neatht Elactmans Creok Ra (M)											
7	12	1	00	0.005	98	105 a	00	01	0.49	082	602
0	T	1	00	0005	14.0	Losa	0.0	0.1	0.48	0.02	60.4
9	${ }_{R 2}$	1	0.0	0.005	14.6	Lose	0.0	ar	0.49	0.82	603
Approsch		3	0.0	0.005	12.8	$\underline{\cos } \mathrm{A}$	0.0	0.1	0.49	0.82	60.3
weet Gwn (m)											
10	12	2	00	0001	69	$\operatorname{tos} A$	00	00	000	063	654
11	Ti	235	215	0137	00	tosa	00	00	000	0.00	799
12	R 2	8	500	0006	90	Losa	00	03	0.39	059	504
Approsen		243	221	0137	03	ma	00	0.3	001	002	786
alverices		se	250	0211	29	ma	0.9	102	0.07	012	710

MOVEMENT SUMMARY

. Site: 102 [GWH-Jenolan Cave 2017 PM Base]
GWH Jemolan Cive Rd 2035 PM
Stop (Tho.Way)

MOVEMENT SUMMARY
Site: 102 [GWHvenolan Cave 2022 AM (Peak Day)]
OWh Jencolan Cave Rd 20055 AM
Stop (woo Way)

Movement Pertormance - Vehicles											
Wo	\%ov	Tolal	Denand Figwn	Per	Nixcer	tever	95\% Bart of Ocour Vohides	Datance	Preg	Efloctow Stop Rifly	Avemi
Ssatic Jenolan Care Ra (S)											
1	L2	7	429	0.325	32.7	tosc	1.5	18.7	0.82	0.06	399
2	π	1	0.0	0.325	17.4	Lose	15	18.7	0.82	0.06	45.6
3	A2	54	54.9	0325	328	Losc	15	187	0.82	0.86	37.4
Approsch		62	525	0.325	325	ma	15	187	0.82	0.86	37.3
East OWH (E)											
4	L2	$4{ }^{4}$	55.3	0.048	8.5	cosa	0.2	24	0.07	0.57	303
5	Ti	269	199	0156	00	cosa	00	00	000	000	799
6	R2	1	00	0001	74	cosa	00	00	0.36	0.55	637
Apposch		320	253	0156	13	cosa	02	24	009	0.99	731
Noatre Blicemmans Creok Ra (M)											
7	12	1	0.	0.005	99	Losa	00	0.1	0.52	0.83	59.6
5	π	1	0.0	0.006	148	Lose	0.0	0.1	0.52	0.33	59.8
9	R2	1	0.0	0.005	15.7	Lose	0.0	0.1	0.52	0.03	597
Acceosch		3	0.0	0005	135	$\operatorname{tos} A$	00	01	0.52	083	597
West cown ${ }^{\text {an }}$											
10	L2	2	0.0	0.001	6.9	LOSA	00	00	0.00	0.63	65.4
11	1	239	21.5	0.151	0.0	tosa	20	00	0.00	0.00	79.9
12	R2	8	625	0.010	102	cosa	0.0	0.5	0.45	0.62	46.
Ascroach		209	22.7	0.151	0.4	Na	0.0	0.6	0.01	0.02	76.1
All vencies		6s	26.7	0.325	40	na	15	187	0.99	0.14	98. 7

MOVEMENT SUMMARY

site: 102 [GWHvenolan Cave 2022 PM (Peak Day)]
OWH-Jenolen Cave Rd 2035 PM
Stop (Two-Way)

Movement Performance - Vehicles											
Wios	${ }_{\text {O\% }}^{\text {O\% }}$	Totalt	Denumatiow	$\frac{\mathrm{pex}}{\mathrm{sin}}$	nurcer	tevel	35% Batk of Ceroue Vohicles wh	Didara	Prop		Aver
1	12	13	503	0.321	298	Losc	1.5	15.8	0.02	0.00	39.4
2	IT	1	0.0	0.321	13.6	Lose	15	15.8	0.82	0.88	47.5
,	R2	60	298	0.321	290	Los C	15	158	0.82	0.88	122
Approseh		74	343	0321	290	ma	15	158	0.82	0.88	418
East Own (E)											
4	12	33	27.3	0.027	79	cosa	0.1	12	0.05	0.58	56.8
5	Ti	304	142	0170	00	$\cos A$	00	00	000	0.00	799
6	n2	2	00	0002	77	cosa	00	00	0.41	0.57	636
Approach		341	154	0170	09	cosa	01	12	0.01	0.06	766
Noatic Blicemmas Creek so (M)											
7	12	1	0.	0.007	10.3	cosa	00	02	0.57	0.84	58.4
8	T	1	0.0	0.007	16.4	Lose	0.0	02	0.57	0.04	Sa. 5
9	R2	1	0.0	0.007	178	Lose	0.0	02	0.57	0.84	ses
Ascroseh		3	0.0	0007	148	tos 8	00	02	0.57	084	585
West CWH ${ }^{\text {anm }}$											
10	12	1	0.0	0.001	69	cosa	0.0	00	0.00	0.63	65.4
11	1	327	18.0	0.185	0.0	Losa	0.0	00	0.00	0.00	79.9
12	R2	4	1000	0.005	10.8	cosa	0.0	04	0.49	0.62	489
Ascrosch		33	190	0.108	02	ma	0.0	0.4	0.01	0.01	79.2
All vencies		751	10.3	0.321	3.4	na	15	15.8	0.09	0.12	71.7

MOVEMENT SUMMARY
. Site: 102 [GWH-Jenolan Cave 2035 AM (Peak Day)]

Movement Pertormance - Vehicles											
${ }^{10}$	\%or	Teat	Demand I lown	$\begin{aligned} & \mathrm{geg}, \\ & \mathrm{gsin} \\ & \hline \end{aligned}$	Averige Dely	Levelt	95\% Back of Oveve Vehicdes	Dilance	Prowed	ESectre Slop Ral	Averse
Soutt: Jendan Cave Ro (3)											
1	12	8	37.5	0.502	49.7	Los0	24	293	0.91	0.92	34.1
2	T1	1	$0 \cdot$	0.502	27.6	Los B	24	223	0.91	0.92	37.6
3	R2	61	51.7	0.502	50.0	Los 0	2.4	293	0.91	0.92	321
Appracen		71	493	0502	496	na	24	293	0.91	0.92	324
East (Wh (E)											
4	12	57	519	0.049	8.4	Losa	02	26	0.08	0.57	51.0
5	T1	333	199	0.193	0.0	Los A	0.0	0.0	0.00	0.00	79.9
6	R2	1	00	0001	77	cosa	00	00	0.41	056	636
Apprach		391	245	0193	13	cosa	02	26	0.01	0.08	737
Nattr Slacimans Creek Rd (V)											
7	12	,	00	0007	103	$\cos a$	00	02	0.58	0.34	580
0	11	1	0	0.007	17.1		0.0	02	0.50	0.04	St. 1
9	R2	,	00	0.007	13.7	cosi	0.0	02	0.58	0.04	Ssa
${ }^{\text {Apprasch }}$		3	00	0.007	15.4	Los $\mathrm{B}^{\text {c }}$	0.0	0.2	0.50	0.84	Sta
West GWH ${ }^{\text {cm }}$											
10	12	3	00	0002	69	cosa	00	00	0.00	0.63	654
11	T1	319	215	0.188	00	cosa	00	00	000	000	799
12	R2	11	600	0014	10.8	cosa	0.1	07	0.49	0.65	47.1
Approsch		333	22.5	0.186	0.4	ma	0.1	0.7	0.02	0.03	76.
anverictes		797	258	0.502	5.2	ma	24	293	0.10	0.14	67.5

MOVEMENT SUMMARY
(1te: site: 102 [GWH-Jenolan Cave 2035 PM (Peak Day)]
GWH JJenoain Cave Ra 2035 PM
Stoe (Two-Nay)

Movenent Perfornance - Wethiches											
${ }_{0}{ }^{0 \%}$	Mov	Total		$\begin{aligned} & \mathrm{Dec} \\ & 5 \mathrm{Sin} \\ & \hline \end{aligned}$	Axeroge	Levelt	95% Dsck of Oueve Vohiles wheles weh	Dotance	Proend		$\begin{aligned} & \text { Avery } \\ & \substack{ \\ \hline \\ \hline \\ \hline} \end{aligned}$
Scutic Jenolsm Care Ra (s)											
1	12	15	57.1	0519	468	Los D	26	267	0.92	0.96	334
2	Ti	1	00	0519	30.1	Losc	26	267	0.92	0.96	389
3	R2	69	27.3	0.519	46.1	Los D	26	287	0.92	0.96	356
Aproast		85	321	0519	460	ma	28	287	0.92	0.96	352
Last Own(L)											
4	12	40	23.7	0.030	78	cosa	0.1	13	0.05	0.50	57.8
5	Ti	375	140	0210	00	cosa	00	00	000	0.00	799
6	R2	3	00	0003	81	cosa	00	01	0.46	0.59	634
Apprast		418	149	0210	08	cosa	01	13	001	0.06	769
Nattr Blsckmms Creek Rd (W)											
7	12	1	0.0	0.009	10.8	cosa	0.0	02	0.66	0.87	56.1
5	11	1	0.0	0.009	19.7	Lose	0.0	02	0.66	0.87	562
9	R2	1	0.0	0.009	224	cos 8	0.0	02	0.66	0.87	56.1
Appoasch		3	00	0009	176	Lose	00	02	0.66	087	562
10	12	,	0.0	0.001	6.9	LOSA	0.0	00	0.00	0.63	65.4
11	11	405	17.9	0232	0.0	tosa	0.0	00	0.00	0.00	79.9
12	R2	s	100.0	0.009	11.7	cosa	0.0	0.6	0.54	0.66	45.4
Accrooch		412	18.9	0232	0.2	na	0.0	0.6	0.01	0.01	792
All venciles		918	18.2	0.519	48	ma	26	267	0.09	0.12	70.0

MOVEMENT SUMMARY

. Site: 102 [GWH-Jenolan Cave 2022 AM (UItimate Local Peak)]
OWh-Jenolan Cave Rd 2035 AM

Movenent Petormance - Vethicies											
${ }^{\text {Mow }}$	\ldots	Tosal	Demand Flown	$\begin{aligned} & \text { nem } \\ & \text { Ssin } \\ & \text { on } \end{aligned}$	Averace Deviy tane	$\begin{aligned} & \text { Invel of } \\ & \text { Sernce } \end{aligned}$	95\% Back of Cureire Vehales whin	Distimese	Pmes		
1	12	5	200	0360	347	Losc	16	205	083	087	418
${ }^{2}$	T1	1	00	0380	184	Los 8	16	205	083	087	443
3	R2	57	57.4	0.360	353	Losc	1.6	20.5	0.53	0.87	362
Approsch		63	53.3	0.360	34.9	ma	1.6	20.5	0.83	0.87	36.7
Esat (OWH (E)											
4	L2	53	Ss.0.	0.048	3.5	cosa	0.2	2.7	0.06	0.57	497
5	T1	269	159	0156	00	cosa	00	00	000	000	798
6	R2	1	00	0.001	7.4	LOSA	0.0	0.0	038	0.55	637
Approsch		323	26.1	0.158	1.4	Losa	0.2	2.7	0.01	0.10	726
Nath: Blactmans Creek Ru (N)											
7	L_{2}	,	00	0.006	99	Los A	0.0	0.1	0.52	0.35	597
8	Ti	1	0.0	0.006	14.8	Lose	0.0	0.1	0.52	033	59.8
9	R2	1	00	0006	156	Los 8	00	01	052	083	597
Apprach		3	00	0006	134	cosa	00	0.1	0.52	083	597
West CWH (\%)											
10	12	2	00	0.001	6.9	Los A	0.0	0.0	0.00	0.63	65.4
11	π	259	21.5	0.151	0.0	Losa	0.0	0.0	0.00	0.00	799
12	R2	6	S0.0	0.006	92	cosa	0.0	0.3	0.41	0.50	503
Approsch		267	220	0.151	0.3	ma	0.0	0.3	0.01	0.02	70.7
Af vencices		657	269	0.360	42	ma	1.6	20.5	0.09	0.14	682

MOVEMENT SUMMARY
Site: 102 [GWH-Jenolan Cave 2022 PM (Ultimate Local Peak)]
GWH Jenolan Cave Rd 2035 PM
Stop (Two Wawis)

Movement Pertornance - Vehicles											
${ }^{100}$	$\stackrel{\text { c }}{ }$	Tulal			Nucem	Lemet	Why Beat of Cuwur VEI	Dudance	Prup	$\frac{51}{5 m+5}$	Avacon
South semian Cave Ra (3)											
1	12	13	50.0	0.451	39.5	Losc	23	26.0	0.00	0.92	36.4
2	T1	1	0.0	0.451	22.0	Lose	23	26.0	0.80	0.92	421
3	R	6	400	0451	391	$\operatorname{Los} \mathrm{C}$	23	260	088	0.92	367
Approsch		${ }^{2}$	410	0.451	39.0	ma	23	26.0	0.80	0.92	36.7
East CWH (E)											
4	12	45	455	0041	83	cosa	02	22	004	058	522
5	11	394	14.2	0.170	0.0	cosa	0.0	0.0	0.00	0.00	799
6	R2	2	0.0	0.002	71	tosa	0.0	0.0	0.41	0.57	63.6
20prosen		333	18.2	0.770	1.2	cosa	0.2	22	0.01	0.08	74.6
Mattr Mascmans creek Rd (N)											
$?$	L_{2}	1	00	0.007	10.3	tosa	0.0	02	0.57	0.84	50.5
8	Ti	1	00	0007	163	tos 8	00	02	0.57	084	58.6
9	R^{2}	1	00	0007	178	Los ${ }^{\text {B }}$	00	02	0.57	0.84	585
Approsech		3	00	0007	148	Los 8	08	02	0.57	084	585
West CWH (w)											
10	12	1	0.0	0.001	6.9	cos A	0.0	0.0	0.00	0.63	65.4
11	T1	327	18.0	0.108	0.0	cosa	0.0	9.0	0.00	0.00	79.9
12	R_{2}	3	1000	0.004	102	cosa	0.0	02	0.48	0.61	498
Approsch		${ }^{31} 2$	10.7	0.180	0.1	ma	0.0	0.2	0.00	0.01	79.4
Anvences		780	20.8	0.451	4.8	ma	23	26.0	0.10	0.14	60.7

MOVEMENT SUMMARY
Site: 102 [GWH-Jenolan Cave 2024 AM (Ultimate Local Peak)-Before Trigger]
OWA Nenolan Cave Rd 2035 AM
Stop (Two Wavy)

Mowement Performance - Vehicles											
${ }_{00}$	${ }_{\text {\% }}^{\text {gov }}$	Total	Dormand Flowe	Sy	Avgrys nely	Sould	95\% Back of Ccmut Vahides weh	Dethines	Prover	shathox	husem
1	12	-	16.7	0.471	4.8	Loso	22	27.4	0.89	0.80	37.9
2	II	1	0.0	0.471	24.4	tos ${ }^{\text {c }}$	22	27.4	0.09	0.90	395
3	R2	62	559	0.471	455	Loso	22	274	089	0.90	331
Ascroach		69	51.5	0.471	45.1	na	22	27.4	0.89	0.90	33.5
East OWH (E)											
4	12	57	556	0051	35	Losa	02	28	006	057	502
5	π	306	199	0.17	0.0	Losa	0.0	0.0	0.00	0.00	799
6	R2	1	0.0	0001	7.6	Losa	00	0.0	0.39	0.5\%	63.6
Asposech		364	25.4	0.17	1.4	tosa	02	28	0.01	0.09	73.
Nornk biscmmans Creek Ro (M)											
7	12	1	0.0	0.007	10.1	Los A	0.0	02	0.56	0.84	50.0
8	T	1	00	0007	160	cos 8	00	02	056	Oes	58.
9	R2	1	00	0007	172	cos E	00	02	0.56	0.84	588
Apposth		3	0.0	0.007	14.4	Los A	00	02	0.56	0.84	58.8
West Own (W)											
10	12	3	0.0	0.002	69	Losa	0.0	0.0	0.00	0.53	65.4
11	Ti	294	215	0172	00	cosa	00	00	000	000	799
12	R2	7	571	0.008	97	cosa	00	03	0.45	0.61	487
Appoach		304	22.1	0172	03	na	00	03	001	002	785
as venices		741	264	0471	51	na	22	274	010	014	674

MOVEMENT SUMMARY

Site: 102 [GWH-Jenolan Cave 2024 PM (ultimate Local Peak)-Before Trigger]
${ }^{\text {GWH. Jenoan Cave Re }} 2035$ PM

Movement Performance - Vehicles											
M00	${ }_{\text {Oow }}^{\text {Mow }}$	Total			nexrey	Levelot	Pyx Dack of Owow Vhistes ch	Distrace	Prop	$\begin{aligned} & \text { Lhectve } \\ & \text { slop Rate } \end{aligned}$ pervish	Averyo
1	${ }^{12}$	13	50.0	0.591	54.3	Loso	3.1	34.9	0.93	0.98	34.7
2	11	1	0.0	0.591	33.0	Losc	3.1	34.9	0.93	0.90	36.0
3	ne	73	377	0591	540	Loso	31	349	0.93	098	321
Apposech		${ }^{56}$	39.0	0.591	53.8	NA	3.1	349	0.93	0.98	321
Enat GWH (E)											
4	12	49	426	0.043	83	Losa	0.2	23	0.05	0.58	529
5	T1	365	14.0	0.193	0.0	cosa	0.0	0.0	0.00	0.00	79.9
6	R_{2}	3	0.0	0.003	79	cosa	0.0	0.1	0.44	0.59	63.4
Approsen		398	17.5	0.193	1.1	cos A	0.2	23	0.01	0.08	75.0
Nottr Diockmans Creek Rd ((
7	12	1	00	0008	106	cosa	00	02	0.62	0.85	57.2
8	T1	1	0.0	0.008	18.2	LOS 8	0.0	0.2	0.62	0.85	57.3
9	R2	1	00	0.008	202	Los 8	0.0	02	0.62	0.85	57.2
mpprosin		3	0.0	0.908	16.3	Los 8	0.0	0.2	0.62	0.85	57.2
West own (w)											
10	12	1	0.0	0.001	6.9	Los A	0.0	0.0	0.00	0.63	65.4
11	T1	374	130	0214	00	cosa	00	00	0.00	000	799
12	82	4	1000	0006	107	$\cos A$	00	03	0.51	0.63	494
Appoach		379	189	0214	02	NA	00	03	001	0.01	793
al venicles		s86	202	0591	60	na	31	349	0.10	0.14	675

MOVEMENT SUMMARY
Site: 102 [GWH-Jenolan Cave 2025 AM (Utumate Local Peak)-Tigger]
OWi-Jenolan Cave Rd 2035 AM

Movement Pertornance - Vehicles											
Mos	${ }_{0}^{\text {¢ }}$	Temin	$\begin{array}{r} \text { Demand Flow } \\ \text { HN } \\ \hline \end{array}$	$\begin{gathered} \mathrm{Den} \\ \mathrm{n} \\ \hline \end{gathered}$	$\begin{gathered} \text { numper } \\ \text { Dise } \\ \hline \end{gathered}$	tevelat	95\% Back of Cerre Vhthin Vhtiola weh	Bromarn	Prowe	$\begin{aligned} & \text { slathe } \\ & \text { s.on } \end{aligned}$	
South :enstan Cave Ra (3)											
1	12	6	167	0.409	46.4	Loso	23	20.4	059	0.91	37.3
2	T1	1	00	0.469	25.5	Lose	2.3	20.4	0.59	0.91	33.8
3	R2	63	550	0489	470	LosD	23	284	039	091	327
Approsen		71	50.7	0.489	46.6	NA	23	26.4	089	0.9	33.1
Esat awh (e)											
4	12	57	556	0.051	8.5	Losa	0.2	28	0.07	0.57	502
s	11	312	199	0.100	0.0	Losa	0.0	0.0	0.00	0.00	79.9
6	R2	1	00	0.001	76	$\cos A$	0.0	0.0	039	0.56	63.6
Approsen		369	254	0.180	13	$\operatorname{tos} A$	02	28	001	009	731
Nath: Blacimans Creek Rdon											
7	12	1	00	0007	102	Losa	00	02	0.5s	084	586
\%	π	1	0	0.007	162	Los:	0.0	02	0.50	0.4	588
9	R2	1	0.	0.007	17.5	Lose	0.0	02	0.5	0.54	58.7
approsen		3	00	0.007	14.6	Lose	0.0	0.2	0.56	0.84	50.7
West GWH (m)											
10	12	3	00	0002	69	tosa	00	00	000	0.3	654
11	T1	209	215	0175	00	tosa	00	00	0×0	000	799
12	R2	8	500	0.009	95	$\underline{\cos } \mathrm{A}$	0.0	04	0.45	0.62	502
Approsch		311	220	0.175	03	ma	0.0	0.4	0.01	0.02	785
alvetices		754	263	0.489	52	ma	23	22.4	0.10	0.4	67.3

MOVEMENT SUMMARY

Site: 102 [GWH-Jenolan Cave 2025 PM (Ultimate Local Peak)-Trigger]
OWH-Jenolan Cave Rd 2035 PM
Stoo (Twa-Wary

Movement Pentormance - Veticles											
${ }^{10}$	On	Trith		$\frac{\log }{\frac{10}{4 n}}$		$\begin{aligned} & \text { Imelof } \\ & \hline \text { serven } \end{aligned}$	95C/ Back of Qurate Vehicles Vehicles veh	Dotance	Prepor	$\begin{aligned} & \text { Etedrem } \\ & \text { Step Rex } \end{aligned}$	Averye
South Jendan Cave Rod (5 (${ }^{\text {a }}$											
1	12	13	500	0613	575	Lose	32	365	094	0.99	309
2	T	1	00	0.613	352	Losc	32	365	094	0.98	349
3	$p 2$	3	33.7	0.613	572	Lose	32	365	0.4	0.99	31.3
Approsch		${ }^{86}$	390	0.813	57.0	na	32	36.5	094	0.99	31.3
East GWH(E)											
4	12	51	41.7	0.043	32	Losa	02	23	2005	0.50	53.1
5	Ti	352	141	0.97	00	Losa	00	00	000	000	799
,	82	3	00	0003	80	Losa	00	01	044	0.59	634
Approsen		405	174	0.197	11	Losa	02	23	001	0.08	750
7	12	1	00	0 oos	10.6	Losa	00	02	063	086	570
3	II	1	00	0.000	10.5	Lose	0.0	0.2	0.63	0.06	57.1
9	R2	1	00	0.008	20.6	Los B	00	02	0.63	0.86	57.0
Approsen		3	00	0.008	16.6	cos $\cos ^{\text {c }}$	0.0	0.2	0.63	0.86	57.0
wert Owh (w)											
10	12	1	00	0001	69	Los 4	00	00	000	0.63	654
11	Ti	330	180	0218	00	Losa	00	00	000	000	799
12	$n 2$	4	1000	0006	108	Losa	00	03	051	063	494
Approach		385	18.9	0218	02	Ma	00	03	001	008	793
at venices		830	20.1	0.613	62	Ma	32	365	010	0.14	672

The Transport Planning Partnership

MOVEMENT SUMMARY

3it site: 102 [GWH-Jenolan Cave 2028 AM (Ultimate Local Peak)-Before AM Trigger]
GWH-Jenolan Cave Rd 2035 AM

Movement Performance - Vehicles											
$\frac{\text { Mov }}{10}$	${ }_{\text {OD }}^{\text {Mov }}$	$\begin{aligned} & \text { Total } \\ & \text { vehh } \end{aligned}$	Demand Flows H/N $\%$	$\begin{aligned} & \text { Deg. } \\ & \text { Saly } \\ & \text { vict } \end{aligned}$	$\begin{aligned} & \text { Average } \\ & \text { Delay } \\ & \text { sec } \end{aligned}$	$\begin{aligned} & \text { Level of } \\ & \text { Service } \end{aligned}$	95% Back of Queue Vehicles Vehicles ch	Distance	${ }_{\text {Prop }}$ Pueved	$\begin{gathered} \text { Effective } \\ \text { Stop Rate } \\ \text { per veh } \end{gathered}$	$\begin{aligned} & \text { Average } \\ & \text { Speed } \\ & \mathrm{kmin} \end{aligned}$
1	L2	6	16.7	0.542	52.7	Los D	2.6	31.7	0.91	0.93	35.0
2	T1	1	0.0	0.542	29.5	Los C	2.6	31.7	0.91	0.93	36.3
3	R2	64	54.1	0.542	53.4	LOSD	2.6	31.7	0.91	0.93	31.0
Appro		72	50.0	0.542	53.0	NA	2.6	31.7	0.91	0.93	31.4
East GWH (E)											
4	L2	59	55.4	0.052	8.5	Los A	0.2	2.9	0.07	0.57	50.3
5	T1	328	19.9	0.190	0.0	Los A	0.0	0.0	0.00	0.00	79.9
6	R2	1	0.0	0.001	7.7	Losa	0.0	0.0	0.40	0.56	63.6
Appro		388	25.2	0.190	1.3	Los A	0.2	2.9	0.01	0.09	73.2
North: Blackmans Creek Rd (N)											
7	L2	1	0.0	0.007	10.3	Los A	0.0	0.2	0.58	0.84	58.2
8	T1	1	0.0	0.007	16.9	Los B	0.0	0.2	0.58	0.84	58.3
9	R2	1	0.0	0.007	18.3	Los B	0.0	0.2	0.58	0.84	58.2
Appro		3	0.0	0.007	15.1	Los B	0.0	0.2	0.58	0.84	58.2
West GWH (M)											
10	L^{2}	3	0.0	0.002	6.9	Los A	0.0	0.0	0.00	0.63	65.4
11	T1	315	21.4	0.184	0.0	Los A	0.0	0.0	0.00	0.00	79.9
12	R2	8	50.0	0.009	9.7	Los A	0.0	0.4	0.46	0.62	50.1
Appro		326	21.9	0.184	0.3	NA	0.0	0.4	0.01	0.02	78.5
All ve		789	26.0	0.542	5.7	NA	2.6	31.7	0.10	0.14	66.9

MOVEMENT SUMMARY
3. Site: 102 [GWH-Jenolan Cave 2028 PM (Ultimate Local Peak)-Before AM Trigger]

GWH-Jenolan Cave Rd 2035 PM

Movement Performance - Vehicles											
$\begin{aligned} & \mathrm{Mov} \\ & \hline 10 \end{aligned}$	Mov	$\begin{gathered} \text { Total } \\ \text { eehan } \end{gathered}$	Demand Flows HV $\%$	$\begin{aligned} & \text { Deq. } \\ & \text { Soln } \\ & \text { Sitict } \end{aligned}$	$\begin{aligned} & \text { Average } \\ & \text { Delay } \\ & \text { sec } \end{aligned}$	$\begin{aligned} & \text { Level of } \\ & \text { Service } \end{aligned}$	95\% Back of Queue Vehicles veh	Distance	$\begin{aligned} & \text { Prop. } \\ & \text { Queued } \end{aligned}$	Effective Stop Rate per veh	$\begin{gathered} \text { Averge } \\ \text { Speed } \\ \mathrm{kmmh} \end{gathered}$
1	L2	15	50.0	0.686	69.5	Lose	3.8	43.3	0.96	1.01	28.1
2	T1	1	0.0	0.686	44.1	Los D	3.8	43.3	0.96	1.01	31.3
3	R2	73	37.7	0.686	69.2	Lose	3.8	43.3	0.96	1.01	28.4
Approach		88	39.3	0.686	69.0	NA	3.8	43.3	0.96	1.01	28.4
East © WH (E)											
4	L2	52	40.8	0.044	8.2	Los A	0.2	23	0.05	0.58	53.3
5	T1	371	14.2	0.208	0.0	Los A	0.0	0.0	0.00	0.00	79.9
6	R2	3	0.0	0.003	8.1	Los A	0.0	0.1	0.45	0.59	63.4
Approach		425	17.3	0.208	1.1	Los A	0.2	2.3	0.01	0.07	75.2
North: Blackmans Creek Rd (N)											
7	L^{2}	1	0.0	0.009	10.8	Los A	0.0	0.2	0.65	0.86	56.3
8	T1	1	0.0	0.009	19.4	LOS B	0.0	0.2	0.65	0.86	56.5
9	R2	1	0.0	0.009	21.9	LOS B	0.0	0.2	0.65	0.86	56.4
Approach		3	0.0	0.009	17.4	Los B	0.0	0.2	0.65	0.86	56.4
West GWH (W)											
10	L2	1	0.0	0.001	6.9	Los A	0.0	0.0	0.00	0.63	65.4
11	T1	399	17.9	0.228	0.0	Los A	0.0	0.0	0.00	0.00	79.9
12	R2	4	100.0	0.006	11.0	Los A	0.0	0.3	0.52	0.64	49.2
Approach		404	18.8	0.228	0.2	NA	0.0	0.3	0.01	0.01	79.3
All Vehicles		921	20.0	0.686	7.2	NA	3.8	43.3	0.10	0.14	66.1

MOVEMENT SUMMARY
(3ili Site: 102 [GWH-Jenolan Cave 2029 AM (Ultimate Local Peak)-AM Trigger]
GWH-Jenolan Cave Rd 2035 AM

Movement Performance - Vehicles											
$\begin{aligned} & \text { Mov } \\ & \text { ID } \end{aligned}$	Mov	Total venh	Demand Flows H $\%$	$\begin{aligned} & \text { Deg } \\ & \text { Sand } \\ & \text { vic } \\ & \hline \end{aligned}$	$\begin{gathered} \text { Averge } \\ \text { Doldy } \\ \text { sec } \end{gathered}$	Level of Service	95\% Back of Queue Vehicles vehicles veh veh	Distance	${ }_{\text {Prop. }}^{\text {Pueved }}$	Effective Stop Rate per veh	$\begin{aligned} & \text { Averge } \\ & \text { Speed } \\ & \text { kmh } \end{aligned}$
South: Jenolan Cave Rd (S)											
1	L2	6	16.7	0.570	56.1	LOS D	2.7	33.8	0.92	0.94	33.9
2	T1	1	0.0	0.570	31.8	LOS C	2.7	33.8	0.92	0.94	35.2
3	R2	65	54.8	0.570	56.8	Lose	2.7	33.8	0.92	0.94	30.1
Approach		73	50.7	0.570	56.4	NA	2.7	33.8	0.92	0.94	30.5
East ©WH (E)											
4	L2	60	54.4	0.053	8.4	Los A	0.2	29	0.07	0.57	50.5
5	T1	334	19.9	0.193	0.0	Losa	0.0	0.0	0.00	0.00	79.9
6	R2	1	0.0	0.001	7.7	Losa	0.0	0.0	0.41	0.56	63.6
Approach		395	25.1	0.193	1.3	Los A	0.2	2.9	0.01	0.09	73.3
North: Blackmans Creek Rd (N)											
7	L^{2}	1	0.0	0.007	10.3	Los A	0.0	0.2	0.58	0.84	58.0
8	T1	1	0.0	0.007	17.1	Los B	0.0	0.2	0.58	0.84	58.2
9	R2	1	0.0	0.007	18.6	Los B	0.0	0.2	0.58	0.84	58.1
Approach		3	0.0	0.007	15.3	Los B	0.0	0.2	0.58	0.84	58.1
West GWH (M)											
10	L2	3	0.0	0.002	6.9	Los A	0.0	0.0	0.00	0.63	65.4
11	T1	320	21.4	0.187	0.0	Los A	0.0	0.0	0.00	0.00	79.9
12	R2	8	50.0	0.009	9.7	Losa	0.0	0.4	0.46	0.62	50.1
Approach		332	21.9	0.187	0.3	NA	0.0	0.4	0.01	0.02	78.6
All venicles		802	26.0	0.570	6.0	NA	2.7	33.8	0.10	0.14	66.5

MOVEMENT SUMMARY
5itis) Site: 102 [GWH-Jenolan Cave 2029 PM (Ultimate Local Peak)-AM Trigger]
GWH-Jenolan Cave Rd 2035 PM
Stop (Two-Way)

Movement Performance - Vehicles											
${ }_{\text {Mo }} \mathrm{D}$	Mov	$\begin{gathered} \text { Total } \\ \text { veth } \end{gathered}$	Demand Flows H	$\begin{gathered} \text { Deq. } \\ \text { Satn } \\ \text { v/c } \end{gathered}$	Average Delay Delay sec	Level of Service	95\% Back of Queue Vehicles ehicles ven	Distance m	Prop. Queued	Effective Stop Rate	$\begin{aligned} & \text { Average } \\ & \text { Speed } \\ & \mathrm{kminh} \end{aligned}$
1	${ }^{1} 2$	15	50.0	0.712	74.6	Los F	4.1	45.8	0.96	1.02	27.0
2	T1	1	0.0	0.712	48.2	LOS ${ }^{\text {D }}$	4.1	45.8	0.96	1.02	30.0
3	R2	73	37.7	0.712	74.4	LosF	4.1	45.8	0.96	1.02	27.3
Appro		${ }^{8}$	39.3	0.712	74.2	NA	4.1	45.8	0.96	1.02	27.3
East GWH (E)											
4	L2	52	40.8	0.044	8.2	Los A	0.2	2.3	0.05	0.58	53.3
5	T1	376	14.0	0.210	0.0	Los A	0.0	0.0	0.00	0.00	79.9
6	R2	3	0.0	0.003	8.1	Los A	0.0	0.1	0.46	0.59	63.4
Appro		431	17.1	0.210	1.1	LOSA	0.2	2.3	0.01	0.07	75.2
North: Blackmans Creek Rd (N)											
7	L^{2}	1	0.0	0.009	10.8	Los A	0.0	0.2	0.66	0.87	56.1
8	T1	1	0.0	0.009	19.7	Los B	0.0	0.2	0.66	0.87	56.2
9	R2	1	0.0	0.009	22.4	Los B	0.0	0.2	0.66	0.87	56.1
Appro		3	0.0	0.009	17.6	Los B	0.0	0.2	0.66	0.87	56.1
West GWH (W)											
10	L2	,	0.0	0.001	6.9	Los A	0.0	0.0	0.00	0.63	65.4
11	T1	406	18.1	0.233	0.0	Los A	0.0	0.0	0.00	0.00	79.9
12	R2	4	100.0	0.006	11.1	Losa	0.0	0.3	0.53	0.64	49.2
Approach		412	18.9	0.233	0.2	NA	0.0	0.3	0.01	0.01	79.3
All vehicles		934	20.0	0.712	7.6	NA	4.1	45.8	0.10	0.14	65.6

MOVEMENT SUMMARY

Site: 102 [GWH-Jenolan Cave 2035 AM (Ulitimate Local Peak)]
OWH Nenolian Cave Rd 2035 AM
Stop (Two Wivy)

Movement Performance - Vehicles											
${ }^{100}$	$\stackrel{\text { OD }}{\sim}$	Totinn	Dented Flown \% $\%$	Dis		Leverst	$\mathbf{8 5 \%}$ Bact of Cusw Vhicies Vhicien weh	midex	Proper		Avery
Soutt Jenclan Cave Ra (s)											
1	L_{1}	6	167	0.602	61.1	LOSE	29	36.4	0.93	0.96	32.4
2	T	1	00	0.602	34.6	tosc	29	354	0.93	0.96	33.6
3	R_{2}	65	548	0602	618	Lose	29	364	0.93	0.96	26.9
Approsen		73	50.7	0.602	61.3	ma	29	36.4	0.93	0.96	29.3
Exat cown (e)											
4	12	60	54.4	0.054	8.4	Los A	02	29	0.07	0.57	50.5
5	π	333	199	0.193	0.0	cosa	0.0	0.0	0.00	0.00	79.9
6	R_{2}	1	00	0.001	7.7	$\cos A$	0.0	0.0	0.41	0.56	63.6
Approach		394	251	0193	13	cosa	02	29	001	009	733
Nortre Blackmans Creek Rd (M)											
7	12	1	00	0007	103	cosa	00	02	0.58	0.84	58.0
,	11	1	0.0	0.007	${ }^{17 \%}$	Los:	0.0	02	0.58	0.84	58.2
9	02	1	00	0007	18.5	Los ${ }^{\text {c }}$	0.0	02	0.58	0.34	50.1
Apposen		3	0.0	0.007	15.3	Lose	0.0	02	0.50	0.84	50.1
west Gwh (m)											
10	12	3	00	0002	69	1054	00	00	000	0.63	654
11	T1	319	215	0188	00	108 A	00	0	000	000	799
12	R2	8	50.0	0.009	9.7	cos A	0.0	0.4	0.46	0.62	50.1
Approsch		331	22.0	0.186	0.3	ma	0.0	0.4	0.01	0.02	78.6
A V Velictes		800	26.1	0.602	64	mA	29	36.4	0.10	0.14	66.0

MOVEMENT SUMMARY
Site: 102 [GWH-Jenolan Cave 2035 PM (Ultimate Local Peak)]
OWH Jenoian Cave Ro 2035 PM
Stoo (Tro Whas)

MOVEMENT SUMMARY

∇ site: 101 [EX-AM Jenolan Caves Rd/Access Road]
New ste
Gneway / Yelo (Twowny)

MOVEMENT SUMMARY
∇ site: 101 [EX-PM Jenolan Caves Rd/Access Road]
Now ste
GWway / Yena (Two-Wa)

Movenent Petiommence-veticles										
OL_{0}^{00}	Teth		5		semat	Symation wheres wh	oiturce	Premed		5
South Jencian Crees Rose										
2 Ti	49	21.3	0029	00	$\underline{\operatorname{Los}} \mathrm{A}$	0.0	00	000	000	500
3 R2	2	500	0003	88	Los A	00	02	027	058	404
Appresach	52	224	0029	04	na	00	02	0.01	0.02	${ }_{780}$
Last necess Rosa										
4 12	3	333	0027	83	Los A	0.1	16	029	0.61	520
- P2	8	825	0027	127	cosa	0.1	16	029	061	456
Approsch	12	545	0027	115	Los 4	01	16	029	061	472
Nattit Jencas Cowes Raso										
7 L2	11	50.0	0.010	0.1	Losa	00	0.0	0.00	0.63	50.4
- Ti	19	13.	2010	00	$\cos A$	00	00	000	000	500
${ }_{\text {Appreasc }}$	29	250	0.810	29	ma	00	00	000	023	661
as venices	03	273	0038	26	ma	01	16	004	016	585

MOVEMENT SUMMARY
∇ site: 101 [2022 AM Jenolan Caves Rd/Access Roasd (Peak Day)]
Now Site
Oneway / Yela (Two-Way)

MOVEMENT SUMMARY

∇ site: 101 [2022 PM Jenolan Caves RdiAccess Road (Peask Day)]
Now Site / Yeld (Two.Woy)

MOVEMENT SUMMARY
∇ site: 101 [2035 AM Jenolan caves ReJAccesss Road (Peak Day)]
New see
Giveway / Yole (Two-Won)

MOVEMENT SUMMARY
∇ site: 101 [2035 PM Jenolan Caves Ra/Access Road (Peak Day)]
New Ste

Moveremt Pertommace-vecicies											
\%ov	${ }^{\circ 0}$	Towe	Comanalisy	80\%	nexer	lesect	*WBekrown whim	Diname	Prosed	tseoties	Naxem
Soutit Jendan Craseras											
2	Ti	67	219	0039	00	cosa	00	00	000	000	800
,	R2	1	00	0.002	78	Losa	0.0	00	025	0.57	64.
Approsen		68	21.5	0098	0.	m	00	00	000	0.01	797
East access Rosa											
4	12	1	00	0005	17	Losa	02	35	0.6	0.86	59.
6	R2	16	300	0069	151	Los 8	02	35	0.45	065	413
Approsch		17	75.0	0.049	147	cose	02	25	0.45	0.65	421
Nust dencan Cowes Rosa											
8	π	26	120	0015	00	Losa	00	00	000	000	200
Approach		38	36.1	0015	28	na	00	00	000	0.19	30
as venices		${ }_{123}$	333	oose	29	ma	02	35	007	0.15	662

MOVEMENT SUMMARY

∇ site: 101 [2022 AM Jenolan Caves Rd/Access Road (Ultimate Local Peak)]
New Ste
Onews / Yeld (Two-Won)

MOVEMENT SUMMARY

∇ sitte: 101 [2022 PM Jenolan Caves Rd/Access Road (UItimate Local Peak)]
New Ste
OWeway / Yeld (Two-Wom)

	Total		88	iveres	combt		Dutimet	Prom	$\begin{aligned} & \text { Ebchen } \\ & \text { Siphe } \end{aligned}$	5
Soutit Jendan Cras Rose										
2 Tr	55	21.2	0.032	00	Los A	00	0.0	0.00	000	800
$3 \quad \mathrm{R} 2$	1	00	0002	79	cosa	00	00	026	0.55	640
Approsch	5	20.8	0032	02	na	00	00	000	001	796
Entaccen Rana										
$4{ }^{4}$	1	0.0	0.070	76	cos A	03	53	0.45	0.65	59.8
6 R2	24	870	0070	14.4	cosa	03	53	045	065	40.6
Approach	25	333	Q070	14.1	Losa	03	53	0.45	0.65	41.1
Natt Jencian Cweer Rosd										
$7 \quad 12$	${ }^{22}$	\$82	0.029	92	cos A	$0 \cdot$	0.0	0.00	0.63	418
$\bigcirc \mathrm{T}$	21	10.0	0.011	00	cosa	00	00	000	0.00	80.0
Approsch	43	537	0.029	${ }^{4}$	na	00	00	000	032	545
All vaictes	124	44.	-070	48	ma	03	53	000	025	58.

MOVEMENT SUMMARY
∇ site: 101 [2035 AM Jenolan Caves Rd/Access Road (Uitimate Local Peak)]
New site
Gimeway $/$ Yela (Tro. Wan)

Movement Pertormance-vehicles											
5	$\%$	reth	Demanmin	5		$\begin{aligned} & \text { lover ef } \\ & \text { Serice } \end{aligned}$	 whicket wh	Butwes	Smese	Elochore	Avelo
2	T	40	368	0095	00	Losa	00	00	060	000	200
3	B_{2}	1	00	0002	87	cosa	00	01	034	057	631
Acruoch		41	359	0.025	02	ma	0.	0.1	0.01	001	794
Exthecess Road											
4	12	1	0.	0.007	8.4	cosa	03	5.4	0.9	0.65	59.1
6	R_{2}	22	952	0087	154	Los8	03	54	049	oss	390
Ascrosech		23	90.9	0067	15.0	cos ${ }^{\text {a }}$	0.3	5.4	0.49	0.55	366
Watit Jencan Comes Rosa											
7	12	22	952	0029	92	Losa	00	00	000	063	41.8
8	π	46	341	-029	00	cos A	\therefore	0	000	000	200
aceroach		ss	53.8	0.029	30	na	00	00	000	020	618
Anvencies		133	548	0067	42	ma	03	54	-09	022	600

MOVEMENT SUMMARY
∇ site: 101 [2035 PM Jenolan Caves Rd/Access Road (Ultimate Local Peak)]
Naw ste
Giveway I Yell (Two-may)

Appendix D

Extracts of Forecast Flows from Roads and Maritime Reports

Transport and Urban Planning (2009) Traffic Study of Proposed Widening of Great Westem Highway, Bulla burra (Pages 120-121)

5.3 Future Traffic Volumes in Great Western Highway at Bullaburra

Traffic growth in the Great Western Highway at Bullaburra would be expected to increase by $1.9 \%-2.2 \%$ per annum between 2007 and 2032. Given the land use changes at Lawson, the higher traffic growth of 2.2% per annum is considered to better reflect the future land use changes.

The daily traffic volume and classification counts undertaken in late November / early December 2007 provided daily (7 day AADT) volumes in the Great Western Highway of:

- $22,552 \mathrm{vpd}$ near Kalinda Road (east)
- $22,312 \mathrm{vpd}$ east of Genevieve Road.

Adopting a linear average traffic growth rate of 2.2% per annum provides the following future traffic volume projections for the Great Western Highway for the years 2008, 2012, 2022 and 2032.

TABLE 5.1

PROJECTED DAILY (7 DAY AADT) TRAFFIC VOLUMES GREAT WESTERN HIGHWAY AT BULLABURRA

Year	Near Kalinda Road (east)	East of Genevieve Road
2007	22,552	22,312
2008	23,048	22,803
2012	25,033	24,766
2022	29,994	29,675
2032	34,956	34,584

Future traffic growth in the local streets in Bullaburra that intersect with the Great Western Highway will be incremental and, based on the future increases in the population and the number of dwellings between 2006 - 2021 in the Bullaburra / Lawson area, could be expected to be up to 14% over the next $10-15$ years. The adoption of 2.2% linear growth per year for the future peak hour traffic volumes using the local roads that intersect with the Great Western Highway would provide a conservative or higher rate of traffic growth that would take into account population growth plus other changes such as an increase in the number of drivers in the area, from smaller house sizes and more younger adults.

Roads and Traffic Authority (2006) The Great Westem Highway Upgrade Lawson Section 1A Traffic, Tra nsport and Accessibility Report (page 9)

2. Future traffic volume projections

Traffic volumes for five year intervals between 2005 and 2030 were estimated by projection from historical data. Linear and exponential regressions were compared. The linear regression line indicated a growth rate of approximately 2.3% per annum (based on year 2002 traffic volume), which is considered reasonable for this type of road given its location with respect to major population centres and the relatively long 30 year analysis period.

Consequently, the traffic volumes shown in Table 2.1 have been predicted for the Great Western Highway upgrade between Ferguson Avenue and Bass Street.
Table 2.1 Traffic volume projections

Year	AADT** Both Directions (vpd)	AADT* One Direction (vpd)	Peak Hourly Volume One Direction (vpd)
2002	2185 I	10926	863
2005	23937	11968	945
2010	26406	13203	1043
2015	28875	14437	1141
2020	31344	15672	1238
2025	33813	16906	1336
2030	36282	18141	1433

** Based on a conversion rate of I.I5 axle pairs / vehicle

* Assumes 50/50 directional split

This table indicates, for example, that ten years after the proposed upgrade is complete i.e. 2020, the estimated vehicles per day using the Highway (in both directions) is approximately 31,300 or equivalent to a 31% increase in traffic compared with current (2005) traffic volumes.

GHD (2006) The Great Westem Highway Upgrade Wentworth Falls East Review of Environmental Factors Volume 1 - Main Report (pages 114-115)

13.2 Future traffic volume projections

Traffic volumes on the Great Western Highway for 2008, 2018, 2028 and 2038 were estimated by projection from historical data. A growth rate of approximately 556 vpd per annum (based 2002 traffic volumes) is projected, which is considered reasonable for this type of road given its location with respect to major population towns i.e. Sydney. Table 13.3 illustrates the projected weekday traffic volumes.

Table 13.3 Weekday traffic volume projections

Year	AADT Both Directions (vpd)	AADT* One Direction (vpd)	Peak Hourly Volume One Direction (vpd)
2006	25,063	12,532	1,003
$2008^{* *}$	26,175	13,088	1,047
2010	27,287	13,644	1,091
2018	31,735	15,868	1,269
2020	32,847	16,424	1,314
2028	37,295	18,648	1,492
2030	38,407	19,204	1,536
2038	42,855	21,428	1,714

*Assumes 50/50 directional spfit
"Assumed completion date.
Table 13.3 indicates that ten years after the proposed upgrade is complete i.e. 2018 , it is estimated that approximately 31,735 vehicles will be using the highway each day (in both directions) is, which is approximately 39% increase in daily traffic from 2002.

GHD (2002) Upgrade of the Great Westem Highway - Woodford to Hazelbrook Review of Environmental Factors Volume 1 - Ma in Report (pages 25-26)

13.2 Future Traffic Volume Projections

Traffic volumes for 2000, 2010, 2020 and 2030 were estimated by projection from historical data. Linear and exponential regressions were compared. The linear regression line indicated a growth rate of approximately 2.4% per annum or 502 vehicles per day per year (based on year 1999 traffic volume), which is considered reasonable for this type of road given its location with respect to major population towns i.e. Sydney and the relatively long 30 year analysis period.

Consequently, the traffic volumes shown in Table 13.7 have been predicted for the Woodford-Hazelbrook section of the Great Western Highway.

This table indicates, for example, that ten years after the proposed upgrade is complete i.e. 2017, the estimated number of vehicles per day using the highway (in both directions) is approximately 29,518 which is equivalent to a 35% increase in traffic volume over year 2002 volumes.

Table 13.7 Traffic Volume Projections

Year	AADT Both Directions (vpd)	AADT One Direction (vpd)	Peak Hourly Volume One Direction (vpd)
1999	20,485	10,242	819
2000	20,986	10,493	839
2001	21,488	10,744	860
2002	21,990	10,995	880
2003	22,492	11,246	900
2004	22,994	11,497	920
2005	23,496	11,748	940
2006	23,998	11,999	960
2007	24,500	12,250	980
2008	25,001	12,501	1,000
2009	25,503	12,752	1.020
2010	26,005	13,003	1,040
2011	26,507	13,254	1,060
2012	27,009	13,504	1,080
2013	27,511	13,755	1,100
2014	28,013	14,006	1,121
2015	28,514	14,257	1,141
2016	29,016	14,508	1,161
2017	29,518	14,759	1,181
2018	30,020	15,010	1,201
2019	30,522	15,261	1,221
2020	31,024	15,512	1,241
2021	31,526	15,763	1,261
2022	32,028	16,014	1,281
2023	32,529	16,265	1,301
2024	33,031	16,516	1,321
2025	33,533	16,767	1,341
2026	34,035	17,018	1,361
2027	34,537	17,268	1,381
2028	35,039	17,519	1,402
2029	35,541	17,770	1,422
2030	36,043	18,021	1,442
2031	36.544	18,272	1,462
2032	37,046	18,523	1,482

[^1]The Transport Pla nning Pa rtnership
Suite 402 Level 4, 22 Atchison Street
St Leonards NSW 2065
P.O. Box 368

SummerHill NSW 2130

0284377800
info@ttpp.net.au

[^0]: ${ }^{1}$ Traffic volumes summa rised in Appendix 4 of the Review of Great Westem Highway Upgrades West of Katoomba - Independent review, Evans \& Peck, (2012). The data was originally sourced from the Great Westem Highway Upgrade, Mount Vic toria to Lithgow Implementation Strategy, RTA Alliance, (2011).

[^1]: * Assumes 50/50 directional split

