# Appendices 

$($ Total No. of pages including blank pages $=52)$

## Appendix 1 Geotechnical Review of Overburden Emplacement and Structure Redesign (44 pages)

Appendix 2 Review of Biodiversity Impacts and Offsetting Implications - Austen Quarry Modification 2 (6 pages)

## Appendix 1

# Geotechnical Review of <br> Overburden Emplacement and Structure Redesign 

(Total No. of pages including blank pages $=44$ )

Queensland
6 Mayneview Street, Milton Qld 4064
PO Box 1779, Milton BC, Qld 4064
P: +61 738710411 F: +61 733673317

South Australia
2/1 First Street, Nuriootpa SA 5355
PO Box 854, Nuriootpa SA 5355
P: +61 885624158
E: info@groundwork.com.au

| To: | Darryl Thiedeke \& Nicholas Warren | From: | Rod Huntley |
| :--- | :--- | :--- | :--- |
| Cc: | Lee Attard, Rodd Welsh \& Craig McDonald |  |  |
| Address: | 391 Jenolan Caves Road, Hartley, NSW 2790 | Date: | 20th May 2019 |
| Re: | Emplacement Structure Redesign | File Ref.: | 1517_260_007 |

## Project Background

Site inspection and review of the emplacement storage structure at Hartley Quarry was completed, after it was noticed by site management that ponding of water was intermittently occurring between the emplacement structure, and the original landform, thus providing a potential mechanism for shear failure. While no instability was noted, given the design life of the structure is $>35$ years, and when the potential consequences of failure are considered, (significant potential for environmental harm), it is regarded both prudent and necessary to redesign the structure to remove this potential failure mechanism.

The revised design in plan view, with approximate GPS points is shown on Drawing 1517_162 while the design in cross section is shown on Drawing 1517_154.

## Key Design Elements

- The areas which are proposed to be filled are shown on Plate 1. The redesign will fill this area and also involves construction of a diversion drain adjacent to the current access road to direct water away from the structure. On Plate 1 the yellow arrow shows where water occasionally ponds and can overtime seep along the interface between the current landform and the structure. Filling this area and diverting water away from the structure will engineer out this risk.
- The area will be filled to the previously approved height of approximately 828 m AHD , and apart from the geometry of this new contact area and the width of the upper bench, which is necessarily wider at the top to accommodate these design changes, all other relevant design criteria will not change, as they have been demonstrated to be both stable and suitable for approximately 25 years. Batter heights of approximately ten metres, placed at the angle of repose of the material, outer bench widths at approximately 6 metres, and with a maximum total slope angle of the structure being 25 degrees will
continue to be used, refer Plate 2. These design criteria have been previously modelled by both PSM and Groundwork and have been demonstrated to be stable, over the design life and long term of the structure and are considered of a very low risk for instability. The structure using these design criteria has a Factor of Safety of approximately 2 which denotes high levels of stability, commensurate with a Probability of Failure less than $0.3 \%$ which similarly shows a very low chance of total slope failure occurring. Note during construction individual lifts could be as much as 20 meters high before they are re-profiled to a final landform geometry. The previous PSM design report is provided as Attachment 1.
- Fines, clay and lower strength material will continue to be placed in the core of the structure and then be encapsulated by higher strength rubbles, refer Plate 3.
- Upon completion of the structure the design will not limit post-operational rehabilitation outcomes There will be no nett change to the rehabilitation area or the capacity of the landform to support native vegetation including the threatened plant Eucalyptus pulverulenta that we understand has been successfully cultivated in rehabilitation areas to date, refer Plates 4 to 6.
- Benches will continue the current practice of grading at a gentle inclination (nominally at $3-5^{\circ}$ ) toward the centre of the emplacement structure to help manage water quality and to stop erosion and scour from occurring in an uncontrolled fashion across the batter.


## Emplacement Structure Audit

- Review of the recent survey data for the structure demonstrates that no significant or material movement is occurring in the emplacement structure. This information has been included as Attachment 2. No significant movement has been recorded in the structure since the surveys were commenced.
- Site inspection of selected parts of the structure further confirms no material movement is occurring in the structure and no significant vectors for movement were recognised.
- Aerial imagery over a period of years was reviewed and further confirms construction is general accordance with the approved plan. It also shows the progression of rehabilitation works and also further shows no failures have occurred since construction commenced in 2002, refer Plates 7 to 9 .
- Six cross sections were cut through the emplacement structure and assessed against design criteria, refer Sections A-A' to F-F', Drawings 1517.156 and 1517.156B. These sections confirm the total slope angle toe to crest ranges between 23 and 25 degrees, with Sections B-B' and D-D' being the most relevant.
- Geotechnical risk elsewhere on site has been domained, and colour coded for risk on the geotechnical Risk and Hazard register refer Drawing 1517.155. This document forms part of the Principal Hazard Plan Ground and Strata Control for the site.

Should you require clarification on this summary please do not hesitate to contact me.

Yours Sincerely


Rod Huntley
Enc
Drawing 1517_162 Emplacement Structure Plan View
Drawing 1517_154 Emplacement Design Cross Section
Drawing 1517_156 Cross Section Location Plan and Chainage
Drawing 1517_156B Total Slope Angles
Drawing 1517_155 Geotechnical Risk and Hazard Plan Ground and Strata Control
Attachment 1 PSM Emplacement Design Report
Attachment 2 Slope Monitoring




Austen Quarry iewing Area




## Attachment 1

# Pells Sullivan Meynink <br> Engineering Consultants 

## ATTENTION: DARRYL THIEDEKE

Dear Darryl,

## RE: AUSTEN QUARRY STAGE 2 - OVERBURDEN EMPLACEMENT CONCEPT DESIGN

Please find enclosed our report on the concept design of the Austen Quarry Stage 2 Overburden Emplacement. We trust this report is in keeping with your requirements and would be pleased to discuss any aspect.

For and on behalf of PELLS SULLIVAN MEYNINK


## TIM SULLIVAN

Distribution: 1 pdf copy Hy-Tec Industries Pty Limited Original held by PSM

# Hy-Tec Industries Pty Limited <br> AUSTEN QUARRY STAGE 2 OVERBURDEN EMPLACEMENT CONCEPT DESIGN 

## Report PSM167-007R <br> November 2013

## CONTENTS

1. INTRODUCTION 1
2. BACKGROUND 1
2.1. History ..... 1
2.2. Existing Emplacement Design and Construction Considerations ..... 2
2.3. Overburden and Waste Rock Emplacement Requirements ..... 2
2.4. Design Constraints ..... 3
3. OVERBURDEN AND WASTE DESIGN AND DEVELOPMENT ..... 4
3.1. Introduction ..... 4
3.2. Siting ..... 5
3.3. Planned Quarry Development ..... 5
3.4. Emplacement Concept and Development ..... 6
3.5. Surface Water Management ..... 7
3.6. Rehabilitation ..... 8

## FIGURES

1 Location Plan
2 Overburden Generation and Emplacement Phasing
3 Overburden emplacement Stage 2
4 Section view, valley
5 Emplacement Phase 1, Rehabilitation of Stage 1
6 Emplacement Phase 2
7 Emplacement Phase 3
8 Emplacement Phase 4
9 Emplacement Phase 5
10 Emplacement Phase 6
11 Emplacement Phase 7, Rehabilitation of Stage 2

## APPENDICES

A Quarry Pit Development Plans

## 1. INTRO DUCTION

This report presents the results of a planning assessment, geotechnical strategy and concept design for the Stage 2 Overburden Emplacement for Austen Quarry, Hartley. This assessment forms part of the overall planning for Stage 2 extension of the quarry, with extraction extending out to 35 years.

Figure 1 shows the existing Stage 1 overburden emplacement, the existing pit, the final Stage 2 pit perimeter and the site topography.

The existing quarry development is termed Stage 1 and the new planned extraction out to year 35 is termed Stage 2. The existing and the new planned overburden emplacements have been given similar names, Stage 1 and 2 respectively. However, within that, the pit development itself will proceed through a number of stages and these stages relate to various volumes of overburden. The sequence of pit development in Stage 2 are termed Pit Stage A to G.

The overburden emplacement strategy was developed separately and entails a number of separate placements in different areas, termed emplacement phases. Figure 2 shows the overburden and waste rock generation through the quarry life. The relationship between the overburden and waste rock generation, pit stages and the various emplacement phases is also shown in Figure 2. It is noted that the emplacement phases do not match the pit production stages exactly, but merely illustrate concept phasing of the construction of the emplacement.

## 2. BAC KGROUND

### 2.1. Histo ry

The author of this document has been associated with the overburden emplacement since it was first planned in around 1996. The history of geotechnical studies and assessments of the overburden emplacement at Austen Quarry comprises:

1. The overburden emplacement for Stage 1 of the Austen Quarry was designed by the author of this document in 1996 during the initial quarry planning.
2. The geotechnical design included consideration of:
a) siting
b) foundation conditions
c) local drainage
d) locations of any groundwater seepages or springs in the area
e) assessment of topography
f) assessment of local ephemeral watercourses affected by the emplacement and any likely water impacts
g) assessment of the overburden material and likely performance in the emplacement.
3. The design considerations for the Stage 1 emplacement also included liaison with Mr S. Brooks of the NSW Soil Conservation Service regarding design and minimisation of any downstream impacts.
4. The emplacement was inspected and reviewed in January 2007, soon after the quarry commenced operation and after the first lift had been placed.
5. The emplacement was inspected and reviewed again in August 2009 and earlier this year in May.

### 2.2. Existing Emplacement Design and Construction Considerations

The Stage 1 emplacement was designed as a permanent structure and had a number of the design and construction considerations comprising:

- A maximum overall slope on the downstream face of $26^{\circ}$.
- Individual lifts constructed at the angle of repose, assumed $35^{\circ}$ to $40^{\circ}$.
- The surface of individual lifts graded at $3^{\circ}$ to $5^{\circ}$ away from downstream face, in order to control erosion.
- The materials in the lifts is placed such that the coarser more competent rock is located towards the outside of the emplacement.
- The emplacement was constructed from the bottom lift up.
- Water management around the emplacement is a key element.
- A sedimentation dam was required.

This emplacement has performed well and is stable with minimal erosion on rehabilitated faces.

### 2.3. Overburden and Waste Rock Emplacement Requirements

Stage 2 overburden and waste rock generation volumes are presented in Table 2.1 and Figure 2. The Stage 2 emplacement storage requirements are:

- An additional insitu $2.2 \mathrm{Mm}^{3}$ of overburden and waste rock will be generated.
- Assuming a conservative swelling factor of 1.3, this translates to an additional loose volume of $2.9 \mathrm{Mm}^{3}$.
- Assuming an insitu density of $2.0 \mathrm{t} / \mathrm{m}^{3}$, this translates to an additional 4.4 Mt.

TABLE 2.1
PIT DEVELOPMENT STAGE VOLUMES AND TONNAGES (Provided by RW Corkery \& Co Pty Limited)

| TIMELINE | INSITU <br> VOLUME | INSITU <br> VOLUME | AGG <br> QUALITY <br> VOLUME | AGG <br> QUALITY | WASTE <br> ROCK <br> VOLUME | WASTE <br> ROCK <br> TONNES |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\mathbf{( b c m ) ~}$ | $\mathbf{( b c m )}$ | $\mathbf{( b c m )}$ | tonnes | $\mathbf{( b c m )}$ | tonnes |
|  | Cumulative | Per Stage |  |  |  |  |
| Year 0 | $1,992,200$ | $1,992,200$ | $1,593,760$ | $4,143,776$ | 398,440 | 796,880 |
| Stage A (EP1) | $2,457,100$ | 464,900 | 371,920 | 966,992 | 92,980 | 185,960 |
| Stage B (EP2) | $2,800,900$ | 343,800 | 275,040 | 715,104 | 68,760 | 137,520 |
| Stage C (EP3) | $4,034,900$ | $1,234,000$ | 987,200 | $2,566,720$ | 246,800 | 493,600 |
| Stage D (EP4) | $5,845,700$ | $1,810,800$ | $1,448,640$ | $3,766,464$ | 362,160 | 724,320 |
| Stage E (EP5) | $9,874,400$ | $4,028,700$ | $3,625,830$ | $9,427,158$ | 402,870 | 805,740 |
| Stage F (EP6) | $13,720,300$ | $3,845,900$ | $3,461,310$ | $8,999,406$ | 384,590 | 769,180 |
| Stage G (EP7) | $16,379,900$ | $2,659,600$ | $2,393,640$ | $6,223,464$ | 265,960 | 531,920 |
| Total | $\mathbf{1 6 , 3 7 9 , 9 0 0}$ | $\mathbf{1 6 , 3 7 9 , 9 0 0}$ | $\mathbf{1 4 , 1 5 7 , 3 4 0}$ | $\mathbf{3 6 , 8 0 9 , 0 8 4}$ | $\mathbf{2 , 2 2 2 , 5 6 0}$ | $\mathbf{4 , 4 4 5 , 1 2 0}$ |

Note: table taken from RW Corkery \& Co Pty Limited email of 19 November 2013.
$\mathrm{bcm}=$ bank cubic metres

### 2.4. Design Constraints

There are some environmental constraints on the emplacement design including:

- The quarry development area is environmentally and ecologically sensitive, due to its proximity to Coxs River, and the surrounding native vegetation.
- Consideration must also be given to the sight lines from the surrounding vantage points, resulting in the need for progressive vegetated external slopes when the emplacement is above 790 mAHD , in order to minimise visual impacts.
- $\quad$ Sediment runoff must be controlled to minimise impact to existing waterways.

In addition, for emplacement planning and design there are a number of logistical and geotechnical constraints including:

- The overburden and weathered materials are mainly produced in the upper elevations and with larger quantities earlier in the extraction schedule.
- The valley floors are located well below the initial development of the extraction area.
- Because of the topography, access to the floor of valleys is difficult.
- $\quad$ The valley sides are quite steep.
- All the valley locations close to extraction area have topographic constraints.


## 3. CONCEPT DESIGN AND DEVELOPMENT

### 3.1. Introduction

The Stage 2 emplacement design and strategy builds on the good performance of Stage 1 to date, but of necessity includes some changes and differences. The Stage 1 emplacement was designed and constructed from the bottom up as a final landform in a particular topographic setting. The Stage 2 emplacement:

1. Entails larger volumes of overburden and weathered rock generated over the 35 years of extraction.
2. Completely fills a valley, which contained a number of separate branches.
3. Takes place in difficult topography with steep valley side slopes up to around $30^{\circ}$.

This means it is important for stability and economic considerations that the Stage 2 strategy and design needs to be modified compared to Stage 1.

The strategy for the Stage 2 emplacement will involve the following:
4. The emplacement is located in the valley immediately adjacent to the extraction area on the south western side, which allows short hauls, Figure 3.
5. This emplacement completely fills the valley, Figure 3.
6. The emplacement entails two elements, the main emplacement, and where necessary, rehabilitation above 790mAHD constructed in a form to marry into the existing topography.
7. The emplacement is constructed by end tipping across the valley.
8. A more substantial sediment pond is constructed well downstream of the emplacement.
9. The "downstream" face of each lift of the final Stage 2 emplacement needs to be designed in the field, based on the materials available at that time and including the emplacement performance to date and the local hydrology.

These aspects are discussed in the following sections.

### 3.2. Siting

Due to the sensitivity of the surrounding area, geometry and economic factors, it is proposed that the Stage 2 emplacement be located as close to the extraction area as possible. Therefore, the emplacement is located in the valley to the immediate west and south of the extraction area, Figure 3 . This location benefits from being naturally screened from many surrounding areas.

The Stage 2 emplacement, together with the rehabilitation of both Stage 1 and 2 emplacements, have a combined volume of $3 \mathrm{Mm}^{3}$ and follows the valley line down to 700mAHD, Figure 3.

### 3.3. Planned Quarry Development

The quarry development entails the existing extraction area and a separate area on a ridge further south, which join to form a single pit after Pit Development Stage 2.

The development in the existing extraction area to the north will comprise:

- Develop the Stage 1 extraction area out to its full plan, extent except for the retention of the northern barrier.
- Continue the development of the floor from 750mAHD (current) to 730 mAHD (Stage B), to 715 mAHD (Stage E).
- A haul road (to 795 mAHD ) on the southwest pit face.
- In Stage E, once the "hill" of the southern extraction area has been excavated, the two parts will be merged into a single pit.
- This single pit will progress to 685 mAHD in Stage G.

In the South, the development will comprise the following components:

- Flatten the existing ridges, from $804 m A H D$ to 745 mAHD in Stages A to E .
- Develop the floor, from 745 mAHD to 685 mAHD in Stages E to G .
- Develop an ex-pit haul road in Stage 1 downhill across the natural topography from 772mAHD to 730 mAHD , which is around the toe of the overburden emplacement.

Appendix A presents the quarry development plans.
Until the ex-pit haul road is developed in Stage A, filling of the overburden emplacement will be from the north along the existing haul road, which is used for access to the valley west of the Stage 1 emplacement.

### 3.4. Emplacement Concept and Development

The concept for the Stage 2 emplacement of the overburden and waste rock has been developed around the planned quarry and other constraints set out above, including:

1. Filling the valley adjacent to the extraction area, Figure 3. This valley is visually screened from the surrounding areas to an elevation of 790 mAHD and therefore there is minimal visual impact.
2. Keeping the in-situ "rock ridge" between the pit and the overburden emplacement which allows valley storage to be maximised.
3. The emplacement is constructed from two directions:
a) By filling from the haul road along the existing emplacement to the north. This is the initial phase of filling, and will incorporate all overburden materials until the construction of the sediment dam and the ex-pit haul road is complete by the end of Pit Development Stage A, Figure 5.
b) By filling across the valley from the end of the ex-pit haul road. This effectively fills the valley floor and provides a stable base for advancing further lifts from the ex-pit haul road, Figure 6.
c) Filling above 770 mAHD will be from both sides.
d) This will be constructed up to 790 mAHD .
4. This allows flat access or downhill haulage, and is the shortest haul option.
5. The emplacement would be constructed in lifts up to 20 m high, at angle of repose.
6. This temporary downhill face would be rehabilitated progressively from the bottom up at an overall angle of $25^{\circ}$ in 10 m batter heights; Figures 5 to 11 shows the final downhill batters when completed.
7. Any filling about 790mAHD is potentially not visually screened from the east. Therefore, should additional capacity be required by placing overburden above 790 mAHD , some visual screening is required with a bund, between the existing northern extraction area and the emplacement.
8. In this case, the geometry of the rehabilitation areas above 790 mAHD is designed to fit with surrounding landforms by incorporating gentle sloping curves that resemble the surrounding natural landform.
9. This top rehabilitation will be progressively vegetated as it is constructed.
10. The top of this rehabilitation will be up to 810 mAHD .
11. When rehabilitated, it will return the emplacement to a natural state visually.
12. This strategy allows a single permanent sediment dam to be constructed further down the valley at 700 mAHD to act as "catch storage" for both dirty water and any erosion generated from filling higher up the valley.

Figure 3 presents the concept design for the Stage 2 emplacement in plan. Figure 4 presents a sectional view of the emplacement and the existing valley floor topography. Figure 2 presents the volume of the Stage 2 emplacement with time.

Figures 5 to 11 present the Stage 2 emplacement development phasing plans.
The emplacement should be advanced as follows:

- Filling at the point of unloading.
- Overall advance downslope to the south.
- Individual lifts advancing normal to the direction of overall advance, across the valley towards the west.
- Conventional lifts as follows:
- surface of individual lifts graded at 3 to $5 \%$ away from the free face
- placement of coarser blocky rock towards the outside of the slope
- berms between lifts sized to fit within the overall angle constraint.


### 3.5. Surface Water Management

Surface water management is very important and needs to be in place prior to the development of the Stage 2 emplacement.

This will entail construction of the main permanent sediment pond or a sediment control dam structure at the downstream location, see Figure 3. This structure needs to be designed and constructed with consideration for its importance to both sediment control and downstream erosion control.

The sediment dam at the toe of the valley is located a distance downstream from the emplacement along a flat valley floor. This ensures:

- The sediment dam capacity is maximised.
- Any sediment from the emplacement is contained.
- An added safety as a catch berm for any debris.

As a result, any potential adverse outcomes are effectively controlled and managed at the downstream end.

### 3.6. Reha bilitation

Rehabilitation of the existing and proposed emplacement is as follows:

## Stage 1 Emplacement (Emplacement Phase 1)

- The existing emplacement is to be rehabilitated initially, prior to construction of the proposed emplacement, by rehabilitation up to 810 mAHD .
- The geometry of the rehabilitation areas above 790 mAHD is designed to fit with surrounding landforms by incorporating gentle sloping curves that resemble the surrounding natural landform.
- This rehabilitation of the existing emplacement provides visual screening between the existing northern extraction area and the existing and proposed emplacements.


## Stage 2 Emplacement (Emplacement Phase 7)

- $\quad$ The rehabilitation for the proposed emplacement will be up to 810 mAHD , should the volumes be required.
- The geometry of the rehabilitation areas above 790 mAHD is designed to fit with surrounding landforms by incorporating gentle sloping curves that resemble the surrounding natural landform.
- The rehabilitation will be undertaken in sections, with full strips constructed to the final level, rehabilitated and vegetated.
- It is anticipated that the outer-most strip will be constructed first, to provide screening for construction of subsequent strips.

For and on behalf of PELLS SULLIVAN MEYNINK


TIM SULLIVAN







$$
\begin{aligned}
& \text { Emplacement Phase } \mathbf{4} \\
& \begin{array}{l}
\text { Access from southern haul road } \\
\text { Lift from 770mAHD } \\
\text { Final landform slope at } 10 \mathrm{~m} \text { lifts }
\end{array} \\
& \underbrace{50}_{\text {Section Scale ( } \mathrm{m})}
\end{aligned}
$$

Hy-Tec Industries Pty Limited
Austen Quarry, Hartley
Stage 2 Overburden Emplacement
EMPLACEMENT PHASE 4
Figure 8
PSM167-007R




## APPENDIX A

QUARRY PIT DEVELOPMENT PLANS








## Attachment 2



## Appendix 2

# Review of Biodiversity Impacts and Offsetting Implications - Austen Quarry Modification 2 

(Total No. of pages including blank pages $=6$ )

This page has intentionally been left blank

30 May 2019

Nick Warren
Senior Environmental Consultant
RW Corkery \& Co Pty Limited
PO Box 239
BROOKLYN NSW 2083

Via email: nick@rwcorkery.com

Dear Nick,

## Re: Austen Quarry - Proposed Minor Modification to Development Consent SSD 6084 (Niche Ref \#5002)

It is understood that Hy-Tec Industries Pty Ltd is proposing a second modification to Development Consent SSD 6084 (SSD 6084) for the Austen Quarry (the Quarry). The modification relates to improvements to geotechnical safety of the Quarry overburden area. The development, as modified, would remain substantially the same development as that approved under SSD 6084 (as originally granted).

An additional 1.0 hectare of vegetation disturbance is proposed beyond the north-west extent of the approved overburden emplacement. It was identified by RW Corkery \& Co Pty Limited (RWC) that changes to vegetation impacts as a result of the additional disturbance would alter the biodiversity offsetting obligations of the Austen Quarry Stage 2 Project (the Project). So that the total area of vegetation to be cleared remains the same as under the existing SSD 6084, Hy-Tec has proposed to reduce the western extent of the overburden emplacement, where the same vegetation communities are located. The proposed modification would therefore add approximately 1.0 hectare of vegetation disturbance to the area of the approved overburden emplacement and remove 1.5 hectare of approved vegetation disturbance from the western extent of the same area (Figure 1). In order to keep this modification simple, Hy -Tec proposes that the offsetting obligations of the Project remain unchanged (even with an additional 0.5 hectare removed from impact on balance).

Niche Environment and Heritage Pty Ltd (Niche) have been commissioned to confirm that vegetation condition and characteristics in the 1.0 hectare to be added to the approved overburden emplacement footprint is similar to that in the 1.5 hectares to be removed from the approved overburden emplacement footprint.

The flora and fauna impacts and offsetting requirements of the Austen Quarry Stage 2 Extension Project were originally assessed by Niche in 2014 (Niche 2014). Changes to the impact area and offsetting obligations from a subsequent modification (Modification 1) were also assessed by Niche in 2018 (Niche 2018).

The approved boundary of the Stage 2 extraction area and overburden emplacement (approved boundary, as in Niche 2018) and the modified overburden emplacement (final boundary) are shown in Figure 1. Niche has calculated the vegetation clearing required based on the final boundary in Figure 1 (see Table 1).

Table 1 details a comparison of the vegetation clearing required for the approved boundary with the vegetation clearing required for the final boundary. The final boundary results in a reduced impact footprint in comparison to the approved boundary (Table 1):

- The approved boundary requires a total of 24.2 hectares of direct impacts on native vegetation and an additional 2.5 hectares of indirect impacts (based on a 10 metre buffer area) (Niche 2018), and
- The final boundary requires a total of 23.7 hectares of direct impacts on native vegetation and an additional 2.2 hectares of indirect impacts (based on a 10 metre buffer area).

Table 1 also illustrates that the impact of the proposed modification (final boundary) is either the same or less as that for the approved boundary for each plant community type and condition zone. Overall, the proposed modification would result in a 0.5 hectare reduction in direct impacts on native vegetation, compared with the approved boundary. Despite the reduced impact area for two of the plant community types for the proposed modification (final boundary), it is proposed that the offsetting obligation remain the same as that for the approved boundary, as discussed above.

In regards to impacts on the federally and state listed Eucalyptus pulverulenta, Figure 1 and Table 2 illustrate that the there is no change to the impact on this species caused by the proposed modification (final boundary), when compared with the approved boundary. No Eucalyptus pulverulenta occur within the 1.5 hectares of vegetation proposed to be removed from the approved overburden emplacement for the proposed modification, nor within 1.0 hectare of vegetation proposed to be added to the approved overburden emplacement area.

This letter confirms that no changes to biodiversity offsetting obligations result from the proposed modification. I trust that the information provided is suitably detailed, however, should you require any further information please do not hesitate to contact me.

Yours sincerely,


## Sian Griffiths

Niche Environment and Heritage

Senior Botanist and Accredited BAM Assessor
sgriffiths@niche-eh.com
Mobile: 0409483727

## References

Niche (2014), Biodiversity Impact Assessment for Austen Quarry - Stage 2 Extension Project, report for RW Corkery \& Co.

Niche (2018), Austen Quarry Stage 2 Extension Project Modification Application - Offsetting obligation, report for RW Corkery \& Co.

Table 1: Vegetation clearing required for Austen Quarry Stage 2 Extension Project Modification Application 2

| Vegetation Community Unit (Niche) | Niche Type | Approved Boundary |  | Final Boundary |  | Change |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Direct impact (ha) | Indirect impact (ha) | Direct impact (ha) | Indirect impact (ha) |  |
| c1 | Brittle Gum - Broad-leaved Peppermint open forest | 18.1 | 1.4 | 18.1 | 1.4 | No change |
| c2 | Silver-leaved Mountain Gum mallee woodland | - | - | - | - | No change |
| c3 | Forest Red Gum grassy open forest | 1.9 | 0.6 | 1.5 | 0.5 | 0.4 ha reduced direct impact |
| c3a | Forest Red Gum native grassland | - | - | - | - | No change |
| c3b | Forest Red Gum exotic grassland | - | - | - | - | No change |
| c4 | Rough-barked Apple gully forest | - | - | - | - | No change |
| c5 | Stringybark - Apple Box open forest | 4.2 | 0.5 | 4.1 | 0.3 | 0.1 ha reduced direct impact |
| c6 | River Oak riparian open forest | - | - | - | - | No change |
| Total |  | 24.2 | 2.5 | 23.7 | 2.2 | 0.5 ha reduced direct impact |

Table 2: Eucalyptus pulverulenta impacts for Austen Quarry Modification Application 2

|  | Eucalyptus pulverulenta core <br> population | Eucalyptus pulverulenta non-core <br> population | Planted Eucalyptus pulverulenta | Total impact (\# individuals) |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Approved boundary | 0 | 90 | 611 | 701 |
| Final boundary | 0 | 90 | 611 | 701 |



Native vegetation of Austen Quarry and the Modification Application

