

Austen Quary

Stage 2 Extension Project
via Hartley, NSW
Road Transport Assessment

Austen Quary

Stage 2 Extension Project, via Hartley, NSW

Road Transport Assessment

Issue: D 17/09/14

Client: Hy-Tec Industries Pty Ltd Reference: 1359027000

GTA C onsultants Office: NSW

Quality Record

Issue	Date	Description	Prepared By	Checked By	Approved By	Signed
A	$7 / 02 / 14$	Final	Kelly Yoon	Penny Dalton	Ken Hollyoak	Ken Hollyoak
B	$26 / 05 / 14$	Final	Kelly Yoon	Penny Dalton	Ken Hollyoak	Ken Hollyoak
C	$30 / 05 / 14$	Final		Kelly Yoon	Penny Dalton	Ken Hollyoak
D	$17 / 09 / 14$	Final				

© GTA Consultants (G TA Consultants (NSW) Pty Ltd) 2013
The information conta ined in this document is confidential and intended solely for the use of the client for the pumose forwhich it has been prepared and no representation is made or is to be implied as being made to a ny third party. Use orcopying of this document in whole or in part without the written permission of GTA C onsulta nts constitutes an infringement of copyright. The intellectual property contained in this document rema ins the property of GTA Consultants.

GTAconsultants

CONIENIS

1. Introduction 1-1
1.1 Scope of Assessment 1-1
1.2 Coverage of Director-General's Requirements 1-1
2. Austen Quary Operations 1-10
2.1 Site Location 1-10
2.2 Existing Austen Quary Operations 1-10
2.3 The Proposal 1-11
3. Existing Road Transport Environment 1-13
3.1 Road Network 1-13
3.2 Pedestrians 1-21
3.3 Buses 1-21
3.4 Historic Traffic Volumes 1-22
3.5 Traffic Survey Program 1-22
3.6 Daily Traffic Volumes 1-23
3.7 Traffic Composition 1-24
3.8 Peak Hour Traffic Volumes 1-25
3.9 Intersection Surveys 1-27
3.10 Austen Quarry Traffic Generation 1-28
3.11 Austen Quary Traffic Distribution 1-29
3.12 Road Safety Review 1-31
3.13 Roadway Capacity and Efficiency 1-33
3.14 Intersection Operation 1-35
4. Future Road Transport Environment 1-37
4.1 Traffic Growth 1-37
4.2 Changes to the Road Network 1-39
4.3 Austen Quary Traffic Generation to March 2020 1-41
4.4 Future Traffic Volumes to 2020 1-42
4.5 Future Traffic Volumes Beyond 2020 1-45
4.6 Future Roadway Capacity and Efficiency to 2020 1-46
4.7 Future Roadway Capacity and Efficiency Beyond 2020 1-47
4.8 Future Intersection Operation to 2020 1-48
4.9 Future Intersection Operation Beyond 2020 1-49
4.10 Future Pedestrians, Cyclists and Buses 1-49
4.11 Peak Loc al Custo mer Activity to 2020 1-49
5. Road Environment Impacts of the Proposal 1-51
5.1 Austen Quarry Traffic Generation Beyond 2020 1-51
5.2 Future Traffic Volumes Beyond 2020 1-52
5.3 Roadway Capacity and Efficiency Beyond 2020 1-52

CONTENTS

5.4 Impacts on Intersection Operation Beyond 2020 1-53
5.5 Impacts on Great Westem Highway Beyond 2020 1-54
5.6 Impacts on Pedestrians, Cyc lists and Buses 1-56
5.7 Impactson Road Safety 1-56
5.8 Peak Loc al Customer Ac tivity Beyond 2020 1-56
6. Mitigation Measures 1-58
7. Summary and Conclusions 1-59
7.1 Summary 1-59
7.2 Conclusions 1-59
8. References 1-60

Appendices

A: Traffic Survey Results
B: Reported Crashes 2008-2012
C: SIDRA Results by Movement
D: Extracts of Forec ast Flows from RMS Reports

Figures

Figure 2.1: Site Location 1-10
Figure 3.1: Surrounding Road Network 1-13
Figure 3.2: Completed and Curent Works on the Great Westem Highway Near Hartley 1-18
Figure 3.3: Extent of Completed and Proposed Works-Great Westem Highway Upgrade 1-19
Figure 3.4: Speed Limits on the Great Westem Highway 1-20
Figure 3.5: Traffic Volume Data Locations 1-23
Figure 3.6: Average Weekday Heavy Vehic les on the Quary Access Road March 2013 1-30

CONTENIS

Tables

Table 1.1: \quad Coverage of Traffic and Transport-Related Director-General's Requirements 1-2
Table 1.2: \quad Coverage of Traffic and Transport-Related Agency Requirements 1-2
Table 1.3: RTA Guide to Traffic Generating Developments Standard Key Issues for Impact Studies 1-4
Table 1.4: Austroads Guide to Traffic Management Technical Completeness Checklist 1-7
Table 3.1: Recent AADTVolumes on the Great Westem Highway between Faulconbridge and Blackheath 1-20
Table 3.2: Peak Period Bus Services on J enolan Caves Road 1-21
Table 3.3: AADTData (axle pairs perday) 1-22
Table 3.4: \quad Surveyed Daily Two Way Traffic Volumes (vehicles/day) 1-24
Table 3.5: Average Daily Traffic Composition (March 2013) 1-25
Table 3.6: Average Weekday Hourly Two Way Traffic 5:00am to 10:00pm (vehicles/hour) 1-26
Table 3.7: Saturday Hourly Two Way Traffic 5:00am to 3:00pm (vehicles/hour) 1-27
Table 3.8: Weekday Peak Hour Two Way Traffic at Intersection Approaches (vehicles/hour) -27
Table 3.9: Austen Qua my Truck Loads at Weighbridge 2012-13 1-28
Table 3.10: Austen Quarry Traffic on Surveyed Roads March 2013 (vehicles/hour) 1-29
Table 3.11: Reported Crash TypesJ enolan Caves Road North of Quamy Access Road (2008 to 2012) 1-32
Table 3.12: Level of Service C riteria for Class II Two Lane Highways 1-34
Table 3.13: PTSF and Levels of Service March 2013 1-35
Table 3.14: SIDRA Level of Service Criteria 1-36
Table 3.15: Weekday Intersection Operating Conditions March 2013 1-36
Table 4.1: \quad Traffic Forecasts on the Great Westem Highway near Forty Bends 1-37
Table 4.2: General Traffic Forecasts on the Great Westem Highway between 1-38
Table 4.3: General Traffic Forecasts on the Great Westem Highway Through the Blue Mountains 1-39
Table 4.4: Peak Day Austen Quary Traffic Year 2014 to 2020 (vehicles/hour) 1-42
Table 4.5: Peak Day Two Way Traffic in 2020 (vehicles/hour) 1-43
Table 4.6: Indicative Peak Day Traffic Volumes on the Great Westem Highway 2020 1-44
Table 4.7: Indicative Peak Day Heavy Vehicle Traffic on the Great Westem Highway 2020 1-44
Table 4.8: \quad Two Way Traffic in 2035 (vehicles/hour)* 1-45
Table 4.9: Indicative Traffic Volumes on the Great Westem Highway 2035* 1-46
Table 4.10: Future Peak Day Midblock Levels of Service 2020 1-46
Table 4.11: Indic ative Future Peak Day Levels of Service on the Great Westem Highway 20201-47
Table 4.12: Future Midblock Levels of Service 2035* 1-47
Table 4.13: Indic ative Future Peak Day Levels of Service on the Great Westem Highway 2035*1-48
Table 4.14: Future Peak Weekday Intersection Operating Conditions 2020 1-48
Table 4.15: Future Peak Weekday Intersection Operating Conditions 2035* 1-49

CONTENTS

Page

Table 4.16: Jenolan Caves Road East of Austen Quamy PTSF and LOS - Peak Local Customers 2020 1-50
Table 4.17: Jenolan Caves Road/Great Westem Highway Intersection - Peak Local Customers 2020 1-50
Table 5.1: Peak Day Austen Quarry Traffic 2020 to 2050 (vehicles/hour) 1-51
Table 5.2: \quad Future Peak Day Two Way Traffic 2035 (vehicles/hour) 1-52
Table 5.3: Future Peak Day Midblock Levels of Service 2035 1-53
Table 5.4: Peak Day Intersection Operating Conditions 2035 1-53
Table 5.5: Indicative Peak Day Traffic Volumes on the Great Westem Highway 2035 1-54
Table 5.6: Indicative Peak Day Heavy Vehicle Traffic on the Great Westem Highway 2035 1-55
Table 5.7: Indic ative Future Peak Day Levels of Service on the Great Westem Highway 20351-55
Table 5.8: Jenolan Caves Road East of Austen Quamy PTSF and LOS - Peak Local Customers20351-57
Table 5.9: Jenolan Caves Road/Great Westem Highway Operation - Peak Local Customers 2035 1-57

1. Introduction

1.1 Scope of Assessment

This report has been prepared on behalf of Hy-Tec Industries Pty Ltd (Hy-Tec) to present the findings of an assessment of a proposed extension to the existing extraction area and overburden emplacement at the Austen Quamy (the Proposal). The Austen Quamy is loc ated 3.5 kilometres (km) south-southwest of Hartley village and 10 km south of Lithgow; approximately 100 km west of Sydney (see Figure 2.1). The Austen Quamy is accessed via the Quamy Access Road off J enolan CavesRoad.

This report foc uses on the traffic engineering aspects of the Proposal and forms one of the supporting reports for the Environmental Impact Statement (EIS) for the Proposal. Matters relating to rail transport and consultation with roadside residents are not included in this report and are addressed separately in the EIS.

The Austen Quary is Hy-Tec's hard rock quary immediately west of the Blue Mountains, distributing myolite aggregatesand road pavement products to both local area projects and regional destinations. It has been despatching products since 2005 . The products produced at the Quary are primarily used for concrete production, road works, asphalting, rail infrastructure and landscaping purposes and are despatched between 5:00am and 10:00pm Monday to Friday and 5.00am and 3.00pm Saturday, public holidays exc luded.

Hy-Tec proposes to apply for a new development consent to extend the extraction area and overburden emplacement within the Quary whilst maintaining the maximum annual product despatch rate of $1,100,000$ tonnesper annum (tpa) from the Austen Quarry ${ }^{1}$. This report has been prepared to present the findings of a review of the existing and expected future road transport conditions throughout the proposed extended operational life of the Austen Quary in order to identify the implic ations of the Proposal and any measures required to mitigate the Proposal's impacts on the road network.

The remainder of the report is set out as follows:

- Section 2 disc usses the existing operations at the Austen Quary, and the road transport aspects of the Proposal.
- Section 3 describes the existing road network, and presents a review of the existing performance of the road network with regard to Levels of Service on key roads, delays at intersections, and the safety history of the road network used by truckstravelling to and from the Austen Quary.
- Section 4 describesthe changes which are expected to occur to the road transport environment assuming the Quamy operates at its maximum permitted despatch rate until its current approval ceases, including growth in background traffic not associated with the Quary, and changes to the road network.
- Section 5 assesses the traffic generation of the Proposal and the impacts of that traffic on the efficiency and safety of the road network.
- Section 6 addresses the recommended mitigation measures relevant to the Proposal.
- Section 7 presents a summary of the report and the conclusions of the assessment.

1.2 Coverage of Director-General's Requirements

Table 1.1 lists the issues raised in the Director-General's Requirements, together with reference to the sections of this report where each issue is addressed.

[^0]Table 1.1: Coverage of Traffic and Transport-Related Director-General's Requirements

Director-Genera I's Requirements	Relevant Section(s)
The EIS must include:	3.10
\quad accurate predic tions of the road and rail traffic generated by the construction and	4.3
operation of the development;	5.1
	4.6
an assessment of potential traffic impacts on the safety and effic ciency of the road	4.8
network; and	5.3
	5.4
a detailed desc niption of the measures that would be implemented to maintain	
and/orimprove the capacity, efficiency and safety of the road and rail networks in	6
the surounding area overthe life of the development.	

Table 1.2 lists the issues raised in the correspondence from Roads and Maritime Servic es (RMS), Department of Trade and Investment, Regional Infrastruc ture and Services (DTRIS), Lithgow City Council (LCC) and Blue Mountains City Council (BMCC), together with reference to the sections of this report where each issue is addressed.

Table 1.2: Coverage of Traffic and Transport-Related Agency Requirements

Organisation	Issues Raised by Agency	Relevant Section(s)
RMS(15/08/13)	Consider the potential impacts to the safety and efficiency of the classified road network.	$\begin{aligned} & 5.3 \\ & 5.4 \\ & 5.5 \\ & 5.8 \\ & \hline \end{aligned}$
	The EIS should include a Traffic Impact Assessment (TA) that takes into account the key issues relevant to the scale of this proposal as set out in Table 2.1 of the Roads and Traffic Authority "Guide to Traffic Generating Developments" aswell asinformation relating to:	Table 1.3
	the impact of the proposed development on the surrounding road network;	5
	the numberand type of vehic les required to service the quary;	$\begin{gathered} 2.2 \\ 3.10 \\ 4.3 \\ 5.1 \end{gathered}$
	details of existing and proposed access conditions;	$\begin{aligned} & 3.1 .1 \\ & 3.1 .2 \end{aligned}$
	intersection sight distances	$\begin{aligned} & \hline 3.1 .1 \\ & 3.1 .2 \end{aligned}$
	impact on Transport (i.e. School Bus Routes);	5.6
	road traffic noise and dust generation;	Elsewhere in ElS
	considerations for mining \& extractive industries under Clause 16(1) of the State Environmental Planning Policy (Mining, Petroleum Production and Extractive Industries) 2007.	Elsewhere in ElS
	The TIA should consider the AUSTROADS "Checklist for Traffic Impact Assessments" that is Appendix A of the Guide to Traffic Management Part 12: Traffic Impacts of Development 2009 (provided with the agency submission to the DGRs).	Table 1.4
DTRIS (19/08/13)	Document route(s) used to transport quary products to market.	$\begin{aligned} & 2.2 \\ & 5.1 \end{aligned}$
Lithgow City Council (03/09/13)	Consider the need for upgrades to the Glenroy Bridge based on the total number of trucks expected to use the bridge each day.	5.3
BMCC (29/08/13)	Consider the risks associated with heavy truck transport of materials as they cross the Blue Mountains.	5.7
	Consider rail transport as an altemative transportation method of materials.	Elsewhere in ElS

GTAconsultants

As referenced above, Table 1.3 sets out the key issues set out in the RMS's "Guide to Traffic Generating Development" a nd Table 1.4 sets out the Austroads technic al checklist. Both tables include reference to the sections of this report where each issue is addressed, noting that because the Proposal refers to continued operation of an existing functioning facility, many of the design-based aspects of these checklists are not relevant in this instance. Furthemore, as no changes are proposed to on-site / off-site parking or pedestrian routes/public transport routes, references to these in the table have been annotated as‘no change'.

Table 1.3: RTA Guide to Traffic Generating Developments Standard Key Issues for Impact Studies

Procedures \& Key Parameters	Relevant Section(s)
Brief description of the development	1.1
Application and study process	1.1
Introduction	
Background	1.1
Scope of report	1.1
The key issues and objectives of a traffic impact study	1.1
General Data Collection / Existing Conditions	
Description of the Site and Proposed Activity	2.2, 2.3
Site location	2.1
Current land use characteristics (zoning) of the proposed site and land use in the vicinity	3.1
Site access	3.1.1
The Existing Traffic Conditions	3.1
Road hierarchy; including the identification of the classified road network (major and minor roads) which may be affected by the development proposal	3.1
Inventory of road widths, road conditions, traffic management and parking control	3.1
Current and proposed road works, traffic management works and bikeways	3.1.3
Traffic Flows	
Selection of key streets - possibly divided into the major and the minor road network; selection of key assessment periods, chosen to cover the times at which the development would be expected to have its majorimpacts	3
AADTon key streets	3.6
Daily traffic flow hourly distribution, partic ularly in or near residential areas	3.11
Estimate of the speed of traffic on the road to which vehic ular access is proposed	3.1.2
Current traffic generation of site	3.10
Daily and peak period heavy vehicle flows and percentages	3.6, 3.8
The adaptation of a ppropriate computer models or tec hniques for assessing levels of traffic congestion and queuing conditions	3.14
Traffic Safety	
Accident history of road network in the area	3.12
Parking Supply and Demand	
On-street parking provision	2.2
Off-street parking provision	2.2
Current parking demand, including utilisation by time of day and tumover rates	2.2
Short term pick up and set down areas	N/A
Modal Split	2.2
Public Transport	
Rail station locations	N/A
Bus routes and bus stop loc ations; Pedestrian access to busstops; Constraints and conflicts	3.3
Rail and bus service frequencies, ideally separated into Monday to Friday, Saturday and Sunday, for both peak and off-peak times	3.3
Commuter parking provision	N/A
Pedestrian Network	
Identify major pedestrian routes	3.2
Pedestrian flows and potential conflic ts with vehicles, partic ula rly where such conflic ts cause capacity constraint on either vehic ular or pedestrian movement	3.2

Procedures \& Key Parameters	Relevant Section(s)
Pedestrian infrastruc ture	3.2
Proposed developments in the vic inity	3.10
Proposed Development	
The Development	2.3
Plan reference, if plans not contained in study report	
Nature of development	Section 2
Gross floor a reas of each component of development	N/A
Projec ted number of employees/users/residents	2.3
Hours and days of operations	Section 2
Staging and timing of development	2.3
Selection of a ppropriate design vehicles for determining access and circ ulation requirements	Section 2
Access	
Driveway location, including review of altemative locations	5,6
Sight distance of driveways a nd compa risons with stopping and desirable minimum sight distances	3.1.1, 3.1.2
Service vehicle access	N/A
Analysis of projected queuing at entrances	Table 3.1.5
Curent access to site and comparison with proposed access	N/A
Provision for access to, and by, public transport	N/A
Circulation	
Proposed pattem of circulation	N/A
Intemal road widths	N/A
Provision for bus movements	N/A
Service area layout	Section 6
Parking	
Proposed supply	N/A
Parking provision recommended by State Govemment policy	N/A
Council code and local parking policies and plans	N/A
Parking layout	N/A
Projected peak demand, based where appropriate on similar research reports and on surveys of similar developments	N/A
Parking for Service / courier vehic les and bicycles	N/A
Impact of Proposed Development	
Traffic generation during design periods	
Daily and seasonal factors	4.3, 5.1
Pedestrian generation and movements	N/A
Traffic Distribution and Assignments	
Hourly distribution of trips	4.3
Assignments of these trips to the road system based where possible on development feasibility studies or on origin/ destination surveys underta ken at similar developments in the a reas	5.1
Impact on Traffic Safety	
Assessment of Road Safety Impact	5.7
Impact of Generated Traffic	
Daily traffic flows and composition on key streets a nd their expected effect on the environment partic ularly in residential areas	4.6, 4.7, 5.3

Procedures \& Key Parameters	Relevant Section(s)
Peak period volumes at key intersections and effect of generated traffic on congestion levels	$\begin{gathered} 4.8,4.9,5.4 \\ 5.5 \end{gathered}$
Impact of construction traffic during construction stages	2.3
Other proposed developments in the vicinity theirtiming and likely impact, if known	N/A
Assessment of traffic noise	Elsewhere in EIS
Public Transport	
Options for extensions and changes to bus routes and bus stops following disc ussions with the STA and orprivate busoperators	No Change
Provision for pedestrian access to busstops	No Change
Recommended Works	
Improvements to site access and circulation	Section 6
Improvements to roads, signals, roundabouts a nd othertraffic management measures	Section 6
Improvements to pedestrian facilities	Section 6
Effect of recommended works on the operation of adjacent developments	N/A
Effect of recommended works on public transport servicesincluding access to bus routes and bus stops	N/A
Provision of LATM measures	N/A
Funding of proposed improvement projects	N/A
Noise attenuation measures	N/A

Table 1.4: Austroads Guide to Traffic Management Technical Completeness Checklist

GTM section	Steps in traffic impactassessment	Relevant Section(s)
4.4.1 Document proposed development		
	Obtained plans showing layout of all traffic and pedestrian areas on site, loc ations of vehicle and pedestrian accesses, position and layout of nearby driveways and intersections.	No change
	Each type of intemal access (cars, pedestrians, trucks, etc.) is direct, connected, continuous and makes sense.	No change
	Approach roadsand pathsare clearly understood and practical.	$\begin{gathered} \text { No } \\ \text { change } \end{gathered}$
	The correct design vehicle and checking vehicle have been used in various sections of the development.	$\begin{gathered} \text { No } \\ \text { change } \end{gathered}$
	Basic design requirements have been applied.	$\begin{gathered} \text { No } \\ \text { change } \end{gathered}$
	Land use planning zonings in the vicinity are documented.	No change
	Traffic-related features of the development have been summarised.	$\begin{gathered} 3.1,3.10, \\ 3.11 \\ \hline \end{gathered}$
	Timing and staged phasing (if any) hasbeen described, including any connections with extemal timings.	4.3, 5.1

4.4.2 Resolve any initial problems with designers

4.4.4 Describe existing and design year conditions

Existing on-site conditions, including traffic and parking, have been documented.	Section 3
Existing traffic conditions for extemal sites, road lengths and/or areas identified as potentially impacted have been documented for critic al periods.	Section 3
Design year has been selected, and traffic conditions, excluding traffic generated by the development, have been documented. Volumes shown on plan.	4, 5
Parking conditions, as relevant, have been described.	2.2
Traffic crashes at potentially impacted locations have been documented.	3.12
Other known traffic safety or operational problems, and any proposalsto address them, have been documented.	4.2
Any traffic, transport or parking policies which affect the proposed development have been documented.	N/A

GTM section	Steps in traffic impact assessment	Relevant Section(s)
4.4.5 Determine generated traffic and modal split		
	Number of trips which will be generated by the development (daily, peak period, etc.) has been determined for the design yearoryears.	4.3, 5.1
	The split of general traffic, commercial vehicles, public transport vehicles (including taxis), bicycles, pedestrians, etc. has been detemined.	3.7
4.4.6 Determine approach and departure directions		
	Approach and departure directions for the traffic have been determined.	3.6
	Nature of attracted traffic (same origin and retum destination, linked trips, etc.) has been considered and described.	3.11
4.4.7 Assign traffic to roads		
	Traffic generated by the development has been assigned to the road network in the potentially affected area for the design yearoryears,	4.3, 5.1
	Development-generated traffic hasbeen shown on plans.	Table 3.9
	Background traffic (existing volumes factored to the design year) and developmentgenerated traffic have been added together.	4.4, 4.5, 5.2
	Total traffic has been shown on plans for critical times of day or week, etc.	Table 3.9
4.4.8 Determine where non-car traffic will go		
	Paths, lanes, etc. required for pedestrians, cyclists, buses, delivery vehicles, etc. have been determined.	No change
4.4.9 Review limits of area affected		
	Limits of area impacted by the development have been checked, and necessary alterations noted.	Section 5
	If a ssessment over a greater area is needed, further a nalysis has been done.	N/A
4.4.10 Assess traffic operation on roads		
	Traffic operations (traffic volumes, capacity, level of service, delays) for access points, in Idblocks and intersections have been assessed; consequences rioted.	$\begin{gathered} 4.8,4.9,5.4, \\ 5.5 \end{gathered}$
	Circulation of traffic near the site has been considered.	N/A
	Need for on-street parking, and potential impact on arterial roads I traffic routes, has been detemined.	N/A
	Impact on public transport services, from development generated use and from increased traffic on public transport routes (buses and trains) has been assessed.	5.6

4.4.11 Assess traffic operation on-site

Traffic operation of roads, aises, access ways on-site, including traffic circulation within the site, hasbeen analysed.	N/A
Expected traffic volumes and vehicle types can be safely and effic cently accommodated within the traffic and parking areason-site.	5.3
On-site parking provision is adequate and is suitably located.	2.2

4.4.12 Determine required impact-mitigating treatments

	Required changes, improvements, upgrades and/or modific ations to roads, intersections, traffic lanes, controls, access driveways, have been detemined.	Section 6
Required changes on-site and on nearby roads/streets to manage parking have been determined.	N/A	
Required works and traffic management to accommodate pedestrians, cyclists, public transport, delivery vehicles, on-site and in the nearby area, have been detemined.	No Change	
Required treatments relating to pavements, safety and environmental issues have been detemined.	N/A	
	Coordination of all required treatments has been considered.	N/A

GTM section	Steps in traffic impact assessment	Relevant Section(s)

4.4.13 Obtain road safety engineering assessment

	Need for an independent assessment of the road safety aspects of the development has been considered.	N/A
	If necessary, independent road safety engineering assessment hasbeen arranged.	N/A

4.4.14 Doc ument findings and recommendations

	The above steps and their outcomes have been doc umented in a suitable report.	Section 7

2. Austen Quarry Operations

2.1 Site Location

The Austen Quary is accessed from a sealed access road ("Quary Access Road") which intersects with J enolan Caves Road 4.2 km south of the intersection of Jenolan CavesRoad with the Great Westem Highway. The Quary Access Road extends southwards and then eastwards from J enolan Caves Road, c rossing Yorkeys Creek (an ephemeral tributary of Coxs River) at an elevated culvert crossing, before entering the secondary processing area of the Quary via the incoming weighbridge.

Figure 2.1: Site Location

Source: Google Maps 2013

2.2 Existing Austen Quarm Operations

The Austen Quary is a hard rock quary which hasapproval to despatch up to 1.1 million tonnes per annum (Mtpa) of products until March 2020. It is c urrently operating below its approved maximum limit, despatching approximately 750,000 tonnes per annum (tpa). Products are despatched between 5.00am and 10.00 pm Monday to Friday, a nd between 5.00 a m and 3.00 pm on Saturdays, public holidays excluded.

Product transportation is largely influenced by customer requirements and so variesfrom day to day, using a variety of truck configurations, depending on the customer and the destinations of the product. Generally, products destined for the Sydney metropolitan area are despatched with truck and dog combinations, or 19 m long B-Doubles. Deliveriesto local road works projectstend to be done using smaller volume rigid trucks, with a capacity of less than 15 tonnes (t . All trucks travelling to and from the Quamy use Jenolan Caves Road to reach the Great Westem Highway.

As there are fewerdespatch hours on Saturdays, the number of truck trips generated tends to be higher on weekdays than on Saturdays.

GTAconsultants

At the rate of product despatch of $750,000 \mathrm{tpa}$, and taking into account the number of operational days in a typic al year, the Austen Quary generates an average of 83 loads or 166 trips per weekday, where a trip is a one way movement. A truck departing the Quamy loaded, and retuming to the Quamy empty therefore generatestwo trips. It is estimated that the peak number of trips made on a weekday is a pproximately 300 truck trips per day on a peak day, i.e. 150 loads. On days when there are higher numbers of truck trips made, these trips include a number of sma ller rigid vehic les with lowercapacity rather than the larger articulated vehicles.

On the same basis as above, should production reach its approved maximum of 1.1 Mtpa, it is expected that the Austen Quary would generate an average of approximately 250 truck trips per weekday, up to a maximum of 360 truck trips per weekday for the transportation of quarm products to the Sydney metropolitan area. The peak of 360 truck trips per weekday is expected to occur in the order of a pproxima tely five times per year.

On those days when loc al projects are supplied, i.e. between Lithgow and Mount Victoria, and smaller rigid trucks are used, the Quary would generate an a verage of 300 truck trips per weekday and up to 500 truck trips per weekday. This peak of 500 truck trips per weekday is expected to occur on only one or two days peryear.

The Austen Quamy's Road Truck Traffic Ma nagement Plan sets out requirements of all truck drivers approaching, leaving and being loaded at the Austen Quarry to provide safe standard procedures and guidelines. The plan aims to maximise the safety of road users both inside the Quamy and on public roads, ensure compliance with applicable legislation, standards, codes, licences and a pprovals, and to result in no signific ant traffic incidents or delayscaused by quary-related traffic movements. The Plan specifies the route to be used by trucks, i.e. Jenolan Caves Road and the Great Westem Highway.

Hy-Tec operates a driver and vehicle check system at the Austen Quary (and all of its operations), which hasbeen recognised by Cement, Concrete and Aggregates Australia. Hy-Tec developed the standard, Hy-Tec Chain of Responsibility - Driver/Vehicle Checks, which applies to any person involved in consigning; packing; loading; driving; operating a business which controls the use of a commercial vehicle and receiving goods or freight. This standard addresses legal obligations relating to drivers, vehicles, roads and route selection and vehicle operations (e.g. fatigue management, vehicle mass and load compliance, load restraint, daily vehic le checks). A Driver Fatigue Manual has been produced and issued to all Hy-Tec drivers as well as everyone with links to the Chain of Responsibility. A systematic and documented approach has been developed to check compliance of all drivers, be they Hy-Tec drivers orcontractors.

An adequate a mount of informal on-site parking is provided on site to meet the demands of employees and visitors. Due to the Quarry's isolated location and the operating hours of the Qua my, all employees/visitors travel to and from the Quamy is by car.

2.3 The Proposal

Hy-Tec proposesto maintain the existing approved maximum level of qua my despatch activity of 1.1 Mtpa, with an extension to the life of the Quamy for 30 years from March 2020 to March 2050. No change is proposed to the hours during which quarry products are despatched, or to the type of trucks used or the route used by the trucks. The proposed average and maximum number of loads or trips would be the same asthat outlined in Section 2.2.

It is noted the Austen Quamy has not yet operated at its maximum permitted despatch rate of 1.1 Mtpa, thus the road network has not accommodated the truck movements associated with the despatch of 1.1 Mtpa of quamy products in any year. This assessment assumesthat should the Proposal not be approved, the rate of despatch of products from the Austen Quary could still inc rease to the maximum permitted rate of 1.1 Mtpa until the end of its current approval period in March 2020. This assessment therefore
reviews the implications of production at the maximum approved rate of 1.1 Mtpa for a longer period, with the approval being sought for 30 years, i.e. to March 2050.

With the Proposal, as the despatch rate approaches the limit of 1.1 Mtpa, the workforce at the Austen Qua my would gradually increase from 16 to 20 employees. For the pupose of this assessment, it is also assumed that there would be an associated increase in the number of contractors and visitors as a result of the increased activity.

The Proposal would not require any additional construction works on site. There would be no changes to the vehic ular access, parking or intemal layout of the site. No change is proposed to the general size or type of vehicles used for transporting quamy products.

3. Existing Road Transport Environment

This section describes the existing road transport conditions in the vic inity of the Austen Qua my. It presents the results of surveys conducted during March and May 2013, and reviews the history of traffic growth in the region. The road network of direct interest to the Austen Quary is limited to the Quary Access Road, Jenolan Caves Road and the Great Westem Highway, as no altemative access routes exist. The review of the road transport environment therefore focuseson those roads.

3.1 Road Network

The road network in the vicinity of the Austen Quary is described below and is shown in Figure 3.1.
Figure 3.1: Surrounding Road Network

Source: Google Maps 2013

3.1.1 Quarry Access Road

The Quarry Access Road is a private road connecting the Austen Quamy to the local road network. It has a single travel lane in each direction with a sealed width of approximately 10 metres (m) with both incoming centre and road edge line-markings (Plate 3.1 and Plate 3.2). It is a pproximately 3.1 km long from its intersection with J enolan Caves Road to the incoming qua my weighbridge. It is the only vehicular access for personnel and product transportation to and from the Quary. The land adjacent to the Austen Quary is leased to a contractor whose workforce also uses the Quary Access Road to access that land.

At its priority-c ontrolled intersection with J enolan Caves Road, drivers have a good sight distance of a pproximately 200 m to the left a nd right when exiting from the Quary Access Road. Widening of Jenolan Caves Road at the intersection a ssists drivers tuming right from the Quary Access Road to do so with minimal disruption to northbound through traffic, through provision of an auxiliary northbound lane
over approximately 100 m . Vehiclestuming left into the Quarry Access Road use an auxiliary deceleration lane which is approximately 70 m long.
Plate 3.1: Section of Quary Access Road West of Yorkeys Creek Stockpile Area

Plate 3.2: Section of Quary Access Road Approaching the Quamy Entrance

GTAconsultants

3.1.2 Jenolan CavesRoad

Jenolan Caves Road forms part of a classified road route (253) from the Great Westem Highway near Hartley via Hampton, J enolan Caves and Oberon to the Great Westem Highway near Bathurst. It is a State road along this route, aside from the section between Kanangra Walls Road via Edith to Oberon, which is a Regional Road. Jenolan Caves Road intersects with the Great Westem Highway near Hartley, a pproximately 11 km northwest of the town of Mount Victoria. In the vic inity of the Austen Quarry, J enolan CavesRoad hasa sealed width of a pproximately 6.5 m with shoulders of varying widths, and typically has a single travel lane in each direction, with marked centre lines and edge lines. It is an approved route for use by heavy vehiclesup to 19 m long B-Doubles, which may use the route 24 hoursperday, seven days per week. It has a posted speed limit of 80 kilometres per hour (km/h).

At its prionty-c ontrolled intersection with the Quarry Access Road, J enolan Caves Road is widened to provide an a uxiliary right tum (AUR) treatment and auxiliary left tum (AUL) trea tment (Plate 3.3 and Plate 3.4), which a llow through traffic on J enolan Caves Road to pass vehic les slowing to tum right or left into the Quary. Drivers on J enolan Caves Road have adequate sight distance when approaching the intersection from either direction to observe a vehicle tuming or waiting to tum at the intersection.

Plate 3.3: Auxiliary Right and Left Tum Lanes in Jenolan Caves Road at Quary Entrance

Plate 3.4: Auxiliary Left Tum Treatment on J enolan Caves Road at Quarry Entrance

The intersection of J enolan Caves Road with the Great Westem Highway and Blackmans Creek Road is a four-way priority-controlled intersection. A left tum deceleration lane and a right tum bay are provided on the Great Westem Highway for vehic les tuming into J enolan C aves Road.

Drivers exiting J enolan Caves Road onto the Great Westem Highway have good sight distance available of a pproximately 200 m to the South and 400 m to the North.

3.1.3 Great Westem Highway

The Great Westem Highway is the major arterial road linking the Sydney metropolitan area to the Blue Mountains, Lithgow, Bathurst and other regional centres in the central west of New South Wales (NSW). It provides the major road freight, tourist and commercial link between Sydney and the central west and westem NSW, and also serves local commuting trips, loc al freight and industry and to urist trips.

Since 2000, RMS has been undertaking a program of road works on the Great Westem Highway, of which the following works between Emu Plains and Mount Vic toria have been completed:

- Wa mimoo - four lane upgrade and pedestrian bridge at the railway station (completed in July 2000);
- Faulconbridge - four lane upgrade and pedestrian bridge at the railway station (completed in J une 2001);
- Soldiers Pinch (Mount Vic toria) - improved road alignment and overtaking lane (completed in J une 2002);
- Linden - four lane upgrade with new bridges and pedestrian signals (completed in August 2003);
- Medlow Bath - improved alignment, replacement bridge a nd new signalised intersection (completed in December 2003);
- Shell Comer (Katoomba) - four lane upgrade, two new bridges and new traffic signals (completed in August 2004);
- Wentworth Falls West - four lane upgrade with three improved intersections and new off-road shared pedestrian/c yc list path (completed in J une 2005);
- Lapstone Hill safety improvements - median ba mier extended and wider shoulder for cyclists (completed in August 2005);
- Leura to Katoomba - four lane upgrade from Willow Park Avenue, Leura to Bowling Green Avenue, Katoomba (completed in March 2009);
- Wentworth Falls East - four lane upgrade with intersection upgrade and new traffic signals (completed in September 2012); and
- Lawson - four lane upgrade and realignment (completed in December 2012).

In J uly 2012, the Australian and NSW govemments announced a $\$ 250$ million revised investment program for the upgrade of the Great Westem Highway between Katoomba and Lithgow, which would target specific deficiencies. The upgrade aimsto improve road safety, improve road freight efficiency, caterfor the mix of through, local and tourist traffic, and be sensitive to the area's natural environment, heritage and local communities.

Work already completed or underway a long the Great Westem Highway in the vic inity of Hartley is presented on Figure 3.2 and includes:

- Mount Victoria and Victoria Pass
- Road widening and installation of concrete median ba mier
- Closure of right in and out at Mitchells Lookout
- Installation of wider centreline markings.
- Little Hartley and Hartley Valley
- Remove trees, widen and seal shoulder and install wire rope bamier near Adams Shed and East of Mid Hartley Road
- Remove westbound overta king lane and provide channelized right tum facility at Mid Hartley Road.
- River Lett Hill
- Road and shoulder widening, insta llation of a central conc rete median safety bamier, provision of earth embankments a round downhill curves and guardrail adjacent to steep embankments.
- Forty Bends
- Installation of wire bamier westbound.

Figure 3.2: Completed and Curent Works on the Great Westem Highway Near Hartley

Image source: http://www.ms.nsw.gov.au/roadprojects/projects/great_westem_hway/map.html
A summary of the planned, designed, in construction and completed worksfor the Great Westem Highway upgrade is illustrated in Figure 3.3, including the expected date of completion or commencement of works and the length of highway upgrades at each section.

Figure 3.3: Extent of Completed and Proposed Works - Great Westem Highway Upgrade

Base Map Source: Google Maps 2013, GWH Upgrade information sourced from
http://www.rta.nsw.gov.au/roadprojects/projects/great_westem_hway/index.html
Concept design planspublished on the RMS road projects website indic ate that the Great Westem Highway upgrades between Katoomba and Lithgow will maintain the existing speed limits. A summary of the speed zones between Emu Pla ins and Lithgow is shown in Figure 3.4. The current speed limits are generally $80 \mathrm{~km} / \mathrm{h}$ for approximately 60 percent of the highway, with $60 \mathrm{~km} / \mathrm{h}$ 'village' speed zones at towns with fronta ges to the highway. School zones with speed limits of $40 \mathrm{~km} / \mathrm{h}$ (during school zone operation hours) are located through various townsalong the route within the $60 \mathrm{~km} / \mathrm{h}$ speed zones, including adjacent to Mount Victoria Public School, Blackheath Public School, Blue Mounta ins Grammar School at Wentworth Falls, Lawson Public School, Hazelbrook Public School, Faulc onbridge Public School, and Blaxland Public School.

Figure 3.4: Speed Limits on the Great Westem Highway

Base Map Source: Google Maps 2013
Based on volumes ${ }^{2}$ presented in the highway upgrade assessment review (Evans and Peck, 2012), traffic volumes on the Great Westem Highway between Mount Victoria and Lithgow generally decrease towards the west, as follows:

- Victoria Pass 14,000 vehicles perday
- Little Hartley 10,400 vehic lesperday
- Hartley 8,800 vehic lesperday
- Forty Bends 7,900 vehic les perday.

Roads and Maritime Services (RMS) collects data on traffic volumes at certain locations on the road network. The data is expressed in terms of Annual Average Daily Traffic (AADT) which is an annualised measure of the number of axle pairs crossing a point on each road. Recent data for the Great Westem Highway between Faulconbridge and Blackheath was obtained from RMS and is presented in Table 3.1.

Table 3.1: Recent AADTVolumes on the Great Westem Highway between Faulc onbridge and Blackheath

RMS Count Station	Location	Data Year	AADTVolume
99.231	Blackheath	2009	16,060
99.913	Medlow Bath	2011	18,290
99.042	Leura	2009	25,532
99.043	Bullaburra	2012	22,127
99.914	Faulconbridge	2013	27,582

These volumes demonstrate that, like the volumes between Mount Victoria and Lithgow, the traffic volumes on the Great Westem Highway between Faulconbridge and Blackheath also generally decrease towards the west.

[^1]The proportion of heavy vehic les on the Great Westem Highway is reported to be between approximately 8 and 12 perc ent of total traffic, a s follows:

- Bullabura: Weekday average 12.0%, Saturdays 5.7%, Sundays 4.2%;
- Lawson: 8.5\% (7.0\%trucks, 1.5% buses) during peak periods;
- Wentworth Falls East: 10\% daytime (7am to 10pm), 21\% night time (10pm-7am); and
- Woodford-Hazelbrook: 12\% daytime (7am to 10pm), 20\% night time (10pm-7am).

3.2 Pedestrians

There are no formal pedestrian footpaths on either side of the road in the vicinity of the Quamy. However, pedestrian activity a long J enolan Caves Road and along the Quamy Access Road is negligible and formal facilities are not wa ranted.

3.3 Buses

There are a number of private busoperators with regular bus servicesoperating between Mount Victoria, Lithgow and Oberon in the vicinity of the Quamy. These bus operators are:

- Blue Mountains BusCompany (school buses)
- Lithgow Bus Lines (sc hool buses)
- NSW TrainLink.

Regular bus services along J enolan Caves Road are summarised in Table 3.2 below.
Table 3.2: Peak Period Bus Services on J enolan Caves Road

Bus Operator	Number of Bus Services	
	7.00am to 9.00am	3.00pm to 5.00pm
Lithgow Bus Lines (during peak periods)	2	2
NSW TrainLink (during peak periods)	2	1
NSW TrainLink (during off-peak period)	1	2

A Blue Mountains Bus Company sc hool bus also runs a long the Great Westem Highway between Lithgow and the Upper Blue Mountains in the moming and aftemoon. Suburbs with schools included in the service are:

- Blackheath
- Blaxland
- Faulconbridge
- Glenbrook
- Hazelbrook
- Katoomba
- Lapstone
- Lawson
- Leura
- Lithgow
- Mount Riverview
- Mount Victoria
- Springwood
- Wa rimoo
- Wentworth Falls
- Winmalee.

Approximately 60 bus routes service schools within these suburbs before and after school times. There are one to two servicesper route in the moming and aftemoon periods.

In addition, there are a number of sight-seeing tour buses which operate to Jenolan Caves along Jenolan Caves Road and within the Blue Mountains. These operate infrequently and during off-peaktimes.

3.4 Historic Traffic Volumes

Historic AADTdata for roads in the vic inity of the Austen Quamy a re presented in Table 3.3.
Table 3.3: AADTData (axle pairs perday)

Location*	1992	1996	1999	2002	2005	20054
Great Westem Highway						
Hartley, West of J enolan Caves Road	6,711	8,027	7,485	8,583	8,757	7,183
Little Hartley, East of Cox River Road	8,443	9,511	9,598	10,820	10,948	9,128
East of J enolan Caves Road	8,059	8,371	8,548	9,565	9,968	8,092
Jenolan Caves Road						
Oberon, East of Dudley Street	800	-	-	-	-	-

A Additional data available forYear2005 is measured in vehiclesperday rather than axle pairs perday

* See Figure 3.5 forlocations

The data suggests that over the period for which the data is available, AADTvolumes on the Great Westem Highway have fluctuated but have generally inc reased steadily at an average of approximately 2 percent per annum. Insufficient data is available to establish growth on J enolan Caves Road.

3.5 Traffic Survey Program

To quantify curent traffic conditions on the immediate roads serving the Austen Quary, a program of additional traffic surveys was commissioned by GTA Consultants.

Automatic tube count surveys were completed over two weeks between Friday 8 March 2013 and Thursday 21 March 2013. The tube count surveys collected vehicle volume, classification and speed data at hourly intervals over the two week period on the Quary Access Road and on two locations on Jenolan Caves Road, to the north and south of the Quary Access Road. The locations of the tube count surveys are displayed on Figure 3.5.

Figure 3.5: Traffic Volume Data Locations

Base Map Source: Google Maps 2013
Manual surveys of peak period vehicle tuming movements were undertaken at the intersections of J enolan CavesRoad with the Quary Access Road and the Great Westem Highway on Wednesday 29 May 2013. The surveys were conducted between 7:30am and 10:00am, and 4:00pm and 6:30pm. The tuming movement surveys recorded vehicle tuming directions and light and heavy vehicle numbers during the peak periods on a typical weekday as obtained from the aforementioned tube counts.

As noted, the Quary Access Road is also used by staff travelling to and from the adjacent land, which is leased to a contractor. These vehicle movements are not associated with the Austen Quary operations but are included in the surveyed traffic on the Quamy Access Road.

3.6 Daily Traffic Volumes

The daily volumes recorded by the tube count surveys are presented in Table 3.4, which combines the results for the two travel directions at each location surveyed in March 2013.

Table 3.4: Surveyed Daily Two Way Traffic Volumes (vehicles/ day)

Day and Date	Quamy Access Road	Jenolan Caves Road North of Quary Access Road	Jenolan Caves Road South of Quamy Access Road
Friday 8 March	232	1,432	1,233
Saturday 9 March	108	1,964	1,866
Sunday 10 March	18	1,815	1,766
Monday 11 March	266	1,132	1,087
Tuesday 12 March	231	1,077	853
Wednesday 13 March	224	1,087	824
Thursday 14 March	240	1,052	895
Friday 15 March	258	1,301	1,096
Saturday 16 March	132	1,332	1,267
Sunday 17 March	11	1,389	1,456
Monday 18 March	285	1,169	862
Tuesday 19 March	303	1,201	814
Wednesday 20 March	272	1,165	849
Thursday 21 March	246	1,186	947
Average Weekday	256	1,180	946
Average Day	202	1,307	1,130

The surveys indicate that the Quary Access Road caried between 11 and 303 vehic les per day (two way) over the two weeks of surveys, and an average of 256 vehicles per day on weekdays. The traffic activity at the Quary differed signific antly between weekdays and weekend days, with an a verage of 120 vehic les perday on the Saturdays and 15 vehic les per day on the Sundays. In contrast, the busiest days on J enolan Caves Road were weekend days, when the Quary traffic was at its lowest. The Quarry thus makes only a very minor contribution to weekend day traffic on J enolan Caves Road compared with weekdays.

Jenolan Caves Road carmed between 1,052 and 1,964 vehic les perday north of the Quary Access Road, and between 814 and 1,866 vehicles perday south of the Quamy Access Road.

During the survey period, it is noted that local events caused atypic ally high weekend traffic volumes on Jenolan Caves Road on one of the surveyed weekends. The "Six Foot Track Marathon" was held on Saturday 9 March 2013 which hosted approximately 800 entrants as well as spectators, and concluded at Jenolan Caves. Traffic volumes on J enolan CavesRoad were noted to be signific a ntly higher on Saturday 9 and Sunday 10 March than on the following weekend. Any a nalysis of weekend traffic conditions on J enolan CavesRoad should therefore be cognisant that the first weekend background traffic, i.e. traffic not associated with the Austen Quary was abnormally high. The event did not impact on the Austen Quary operations, thus the volume of traffic generated by the Quary on those days would be expected to be within the nomal range for a Saturday and Sunday, noting that no trucks entered or departed from J enolan CavesRoad on the Sunday.

3.7 Traffic Composition

The surveys described in Section 3.6 also provided data on the composition of traffic on the roads, using the Austroads (2004) Vehicle Classific ation System. Light vehic les include motorcycles, cars, vans, 4WDs, and utilities (including those towing a trailer orcaravan). Heavy vehicles include single unit "rigid" trucks and buses with two to four axles and a rtic ulated vehicles such as semitrailers, nigid trucks with trailers, Bdoubles and road tra ins. Table 3.5 summa rises the percentage composition of the traffic on the average weekday and Saturday over the fourteen day survey period.

Table 3.5: Average Daily Traffic Composition (March 2013)

	Quamy Access Road	Jenolan Caves Road north of Austen Quany	Jenolan Caves Road south of Austen Quamy
Vehicles perWeekday			
Light	85	823	748
Rigid	16	70	53
Artic ulated	153	286	145
Percent of Weekday Traffic			
Light	33.5%	69.8%	79.1%
Rigid	6.3%	5.9%	5.6%
Articulated	60.2%	24.3%	15.3%
Vehicles per Saturday		1,480	1,470
Light	40	76	70
Rigid	0	92	26
Articulated	80		93.8%
Percent of Saturday Traffic		89.8%	4.5%
Light	33.3%	4.6%	1.7%
Rigid	0.0%	5.6%	
Artic ulated			

Difference between total vehic les perweekday and Table 3.4 is due to "Class 13 " classific ation unknown vehic les
Table 3.5 demonstrates the difference between the types of vehic les on the Quamy Access Road and those on Jenolan Caves Road on the average weekday and Saturday. On the average weekday, a pproximately two-thirds of vehic les on the Quary Access Road are heavy vehic les, while heavy vehic les make up approximately one-fifth to one-quarter of vehic les on J enolan CavesRoad. On the Saturdays, all hea vy vehic les (including those tra velling to and from Austen Quary as well asthose not a ssociated with the Quamy) accounted for between approximately six and ten percent of total traffic on J enolan CavesRoad.

3.8 Peak Hour Traffic Volumes

A review of the traffic survey results indicates that on the average weekday, the traffic generated by the Austen Quary peaked at different times to the passing traffic on J enolan Caves Road. Table $\mathbf{3 . 6}$ presents the weekday hourly volumes measured at each of the survey locationsover the hours during which the Austen Qua my operates.

Table 3.6: Average Weekday Hourly Two Way Traffic 5:00am to 10:00pm (vehicles/ hour)

Hour	Quamy Access Road			Jenolan Caves Road North of Quary Access Road			Jenolan Caves Road South of Quamy Access Road		
	Light	Heavy	Total	Light	Heavy	Total	Light	Heavy	Total
5.00 to 6.00	11	14	25	18	22	40	14	7	21
6.00 to 7.00	8	15	23	33	23	56	18	8	26
7.00 to 8.00	4	12	16	45	21	66	36	9	45
8.00 to 9.00	5	11	17	53	23	76	44	13	56
9.00 to 10.00	3	11	14	52	26	78	47	17	63
10.00 to 11.00	2	17	19	55	34	89	58	22	80
11.00 to 12.00	3	12	16	58	32	90	53	18	71
12.00 to 13.00	4	7	11	53	25	78	54	19	72
13.00 to 14.00	2	9	11	55	21	76	51	15	66
14.00 to 15.00	6	10	16	68	24	92	59	15	74
15.00 to 16.00	7	12	18	65	21	86	58	12	70
16.00 to 17.00	6	11	16	75	21	96	72	12	83
17.00 to 18.00	13	9	22	65	13	78	57	6	63
18.00 to 19.00	4	5	9	44	10	54	42	5	47
19.00 to 20.00	3	7	10	31	11	42	28	4	32
20.00 to 21.00	2	2	4	20	6	26	18	3	21
21.00 to 22.00	1	0	1	12	3	14	9	2	11

Note bold is the peak hours before and after midday at each survey location
The results demonstrate that on the average weekday, the Austen Quary traffic peaks earlier in the moming a nd later in the evening than the traffic on Jenolan CavesRoad. The variation in hourly traffic on the Quary Access Road is however quite low throughout the average weekday, ranging between 11 and 25 vehic les per hour between 5.00 am and 6.00 pm . Overall peak hour volumes on J enolan Caves Road are relatively low, with fewer than 100 vehic les per hour using the road.

As noted in Section 3.6, one of the surveyed weekends wasimpacted by the "Six Foot Track Marathon" which is expected to have resulted in the increased traffic volumes on J enolan Caves Road. While this would not have impacted the traffic generated by the Austen Quary, the background non-quamy traffic on Jenolan Caves on that weekend is considered to be abnomally high. Traffic volumes on J enolan Caves Road on the second surveyed weekend, when the marathon was not held, were higher than many of the weekdays, suggesting that background Saturday traffic not associated with the Austen Qua my warrants review. This is because the area is subject to tourist traffic, partic ularly on weekends. The following disc ussion of Saturday traffic conditions on J enolan CavesRoad is based on the results only from the second of the two surveyed weekends.

A review of the traffic survey results indicates that on the Saturday, the traffic generated by the Austen Qua my peaked at different times to the passing traffic on J enolan Caves Road. Table 3.7 presents the Saturday hourly volumes measured at each of the survey loc ations over the hours during which the Austen Qua my operates.

Table 3.7: Saturday Hourly Two Way Traffic 5:00am to 3:00pm (vehicles/ hour)

Hour	Quamy Access Road			Jenolan Caves Road North of Quarry Access Road			Jenolan Caves Road South of Quary Access Road		
	Light	Heavy	Total	Light	Heavy	Total	Light	Heavy	Total
5.00 to 6.00	9	12	21	13	17	30	8	6	14
6.00 to 7.00	7	13	19	32	16	48	21	2	23
7.00 to 8.00	2	7	9	47	13	60	36	1	37
8.00 to 9.00	2	6	7	63	5	68	50	6	56
9.00 to 10.00	3	8	10	79	11	90	98	7	105
10.00 to 11.00	3	9	12	114	21	135	110	12	122
11.00 to 12.00	6	13	19	106	30	136	119	8	127
12.00 to 13.00	5	7	11	93	10	103	96	6	102
13.00 to 14.00	3	1	4	88	2	90	98	5	103
14.00 to 15.00	1	1	1	107	6	113	103	5	108

Note bold is the peak hour before a nd after midday at each survey location
The results demonstrate that on Saturdays, the variation in hourly traffic on the Quarry Access Road is however quite low throughout moming, ranging between 7 and 21 vehicles per hour between 5.00am and midday. Aftermidday, the traffic on the Quary AccessRoad declined to be very low during the aftemoon operating hours. Overall peak hour volumes on J enolan Caves Road are relatively low, with fewerthan 140 vehic les per hour using the road during the Austen Quamy operating hours, which ishigher than the average weekday peak hours (Table 3.6).

3.9 Intersection Surveys

The intersection tuming movement surveys completed on 29 May 2013 identified the busiest hours at the intersections of Jenolan Caves Road with the Quary Access Road and the Great Westem Highway. The peak hours at the two intersections, which are those intersections most directly impacted by curent/future quary operation did not coincide. At the Quary Access Road intersection with J enolan CavesRoad, the overall peak hours oc curred from 8.45 a m to 9.45 am , and 4.15 pm to 5.15 pm , and at the intersection with the Great Westem Highway, the peak hours occ urred from 7.30am to 8.30am and from 4.00 pm to 5.00 pm . These peak hours represent the hours during which the highest number of vehic les passed through each intersection during the surveyed periods, thus the timesat which the operation of the intersections would be at their worst. They are not necessarily the peak hours associated with the movement of vehiclesgenerated by the Quary.

The full results of the tuming movement surveys are presented in Appendix A, and the two-way volumes recorded during the peak hours on each of the intersection a pproaches are summarised in Table 3.8.

Table 3.8: Weekday Peak Hour Two Way Traffic at Intersection Approaches (vehicles/ hour)

Intersection and Approach	AM Peak Hour	PM Peak Hour
Jenolan Caves Road and Great Westem Highway	$7: 30-8: 30 \mathrm{am}$	$4: 00-5: 00 \mathrm{pm}$
Blackmans Creek Road	9	6
Great Westem Highway (East)	527	618
Jenolan Caves Road	58	79
Great Westem Highway (West)	482	553
Jenolan Caves Road and Quamy Access Road	$8: 45-9: 45 \mathrm{am}$	$4: 15-5: 15 \mathrm{pm}$
Jenolan Caves Road (North)	77	73
Quamy Access Road	19	18
Jenolan Caves Road (South)	60	61

The tuming movement data at the Quary Access Road intersection (Appendix A) indic atesthat during the 2.5 hour moming survey periods, the Quary generated a total of 20 inbound and 15 outbound trips.

During the 2.5 hour evening survey period, the Quary generated a total of 15 inbound and 26 outbound trips.

Over the survey period, all heavy vehicle movements in and out of the Quamy Access Road were to and from the north. Over the five hours surveyed, approximately 82 percent of light vehic les generated by the Austen Quamy travelled to and from the north, and 18 percent of light vehic les travelled to and from the south.

3.10 Austen Qua my Traffic Generation

Data obtained from the Austen Quary weighbridge provides information on the total number of truck loads per month for the 12 months from J une 2012 to May 2013 inc lusive. On the basis of this data, the average number of loads per weekday and Saturday has been calculated for the period as a whole, and for the days during which the traffic surveys were conducted, taking into consideration the number of operating hourseach month, the variation in operating hours between weekdays and Saturdays, and public holiday closures. The results a re summarised in Table 3.9.

Table 3.9: Austen Quarry Truck Loads at Weighbridge 2012-13

	Total Number of Truck Loads	Average Truck Loads per Operating Hour (Monday to Saturday)	Average Truck Loads per Weekday	Average Truck Loads per Saturday
Annual	19,021	4.0	67	40
Surveyed Days March 2013	809	4.8	81	40

Throughout that year, the Austen Quary produced an average of 67 truck loads of products per weekday, and 40 truck loads of product per Saturday, which generated an average of 134 truck tripsper weekday and 80 truck trips per Saturday. This is equivalent to an average of 8 truck trips per operating hour (including despatch of loaded trucks and retum of empty trucks).

Comparison between the recordsfrom the Quamy and the surveyed traffic during March 2013 (Section 3.5) indic ates that the traffic surveys correlate well with the despatch records. The despatch records show that on those surveyed days, an average of 81 truck loads of products were despatc hed per weekday, generating 162 truck trips per weekday on the Quary Access Road and Jenolan Caves Road to the north. The traffic surveys show an average of 169 heavy vehicle trips generated per weekday over the same period, being 16 rigid truck trips and 153 artic ulated truck trips (Table 3.5). The small difference of seven truck trips per weekday is likely to be truck trips which are not associated with despatch of quary products, for example, deliveries of consumables, maintenance and repair vehic les, and contractors.

On the surveyed Saturdays, the surveyed average of 40 truck loads (80 truck trips) of product per day correlates exactly with the rec ords from the Quary.

Table 3.9 demonstrates that the level of activity on the surveyed weekdays of 162 truck trips per weekday (average of less than 10 truck trips per hour over the operating hours) was above the average of 134 truck trips per weekday calculated over the 12 months from J une 2012 to May 2013. The surveyed weekdays can be considered to have covered a reasonably busy period over the yearand are thusconsidered to be a reasonably robust basis for examining the existing road transport environment associated with the Austen Qua my, being both consistent with the Quary's records and representing above average activity.

Light vehicle traffic generation by the Austen Quary is the result of the workforce of 16 people arriving and departing each day, together with the a mival and departure of visitors a nd contractors. The surveyed average of 85 light vehicle trips per weekday also includestrips associated with the movement of staff to and from the adjacent leased land, which is not related to activity at the Austen Quary. For the purpose of this assessment, the light vehic le traffic generated by the Austen Quary is estimated as follows:

- 16 workers a miving and departing at start and end of shift $=32$ vehicle trips per day
- 10 visitors or contractors a riving and departing on average weekday $=20$ vehicle tripsper weekday
- 4 visitors or contrac tors a miving and departing on Saturday $=8$ vehicle trips per Saturday.

The balance of the surveyed light vehicle trips on the Quary AccessRoad is assumed to be the movement of staff for the adjacent site and a number of quamy staff being required to exit and re-enter the Quary during the day.

The surveyed traffic generated by the Austen Quarm has been assessed to estimate its contribution to traffic on Jenolan CavesRoad on the average weekday. The resulting volumes are summarised in Table 3.10 for the a verage weekday and Saturday total traffic and for the peak hours previously identified as being the busiest weekday hours associated with the Quary traffic and Jenolan Caves Road traffic.

Table 3.10: Austen Quary Traffic on Surveyed Roads March 2013 (vehicles/ hour)

	Quarry Access Road			Jenolan Caves Road North of Quarry Access Road			Jenolan Caves Road South of Quamy Access Road		
	Light	Heavy	Total	Light	Heavy	Total	Light	Heavy	Total
Weekday									
5.00 to 6.00	6	14	20	5	14	19	1	0	1
10.00 to 11.00	1	17	18	1	17	18	0	0	0
11.00 to 12.00	2	12	14	2	12	14	0	0	0
16.00 to 17.00	3	11	14	3	11	14	1	0	1
17.00 to 18.00	8	9	17	7	9	16	1	0	1
Weekday Tota ${ }^{\text {A }}$	52	169	221	43	169	212	9	0	9
Saturday									
5.00 to 6.00	8	13	21	7	13	19	1	0	1
11.00 to 12.00	6	14	19	5	14	18	1	0	1
12.00 to 13.00	4	7	11	3	7	10	1	0	1
14.00 to 15.00	1	1	1	0	1	1	0	0	0
Saturday Tota ${ }^{\text {A }}$	40	80	120	33	80	113	7	0	7

Over the two weeks of surveys, on the average weekday, the Austen Quarm contributed approximately 18 percent of the total traffic and 48 percent of heavy vehic le traffic on J enolan Caves Road north of the Quary Access Road, and less than 1 percent of the total traffic on J enolan Caves Road south of the Quary Access Road. On the Saturday, the Austen Quarm contributed less than 9 percent of the total traffic and 54 percent of heavy vehic le traffic on Jenolan Caves Road north of the Qua my Access Road, and lessthan 1 percent of the total traffic on J enolan Caves Road south of the Quary access. Thus the Austen Quary generates a pproximately half of the heavy vehicles on J enolan CavesRoad north of the Quary Access Road. Other heavy vehic les using J enolan Caves Road include tourist coaches, buses, and some trucks associated with Oberon White Granite Quarry (Mudgee Stone Company) which has approval to generate around 90 two ways trips perday (AADT); Oberon Hardrock Quary (Oberon Quarries) which generates traffic principally to Sydney markets at a rate of up to 400000 tpa and the Highland Pine sawmill complexat Oberon which is reported to generate just over 100 trucks perday.

3.11 Austen Quamy Traffic Distribution

Hy-Tec has advised that on average, approximately 95 percent of qua my products are transported a long the Great Westem Highway to the east of J enolan Caves Road, and 5 percent are transported along the Great Westem Highway to the west of Jenolan CavesRoad. This distribution can vary from day to day, such as when RMS is conducting local road works to the west of J enolan CavesRoad. These local road works tend to use smallercapacity trucks and so generate a greater number of truck trips. Transportation of products for such road works tends to occur during the moming, and is generally completed by 11am.

Thus on busy days with higher use of sma ller capacity trucks, the distribution of quarry product transport traffic may be approximately 30 percent to the west and 70 percent to the east during the moming only.

The surveyed traffic volumesand quamy records provided by Hy-Tec also provide information regarding how the number of trucks despatc hed varies through the day. Figure 3.6 presents the number of inbound and outbound heavy vehicle movements on the Quary Access Road throughout the average weekday, as surveyed during March 2013.

Figure 3.6: Average Weekday Heavy Vehicles on the Quary Access Road March 2013

Figure 3.6 demonstrates that the distribution of truck trips through the day is similar for inbound and outbound trucks, i.e. trucks are not typic ally held at the Quary waiting for despatch throughout the day. There is a notable decrease in truck trips made during the moming "commuter" peak hours, with a peak in outbound trips between 6.00am and 7.00am, followed by a decrease in outbound trips being made between 7.00am and 10.00am.

The surveys show a small number of empty trucks a mive at the Qua my prior to 5.00am due to a vailability of parking immediately a dja cent to the Yorkeys Creek stockpile area provided by Hy-Tec in order to avoid any queuing of vehicles on J enolan CavesRoad. Trucks proceed to the incoming weighbridge after 5.00am.

School zones on the Great Westem Highway operate between 8.00am and 9.30am, and between 2.30 pm and 4.00 pm . The extension of the Austen Quary operating hours for product despatch from 5.00am to 10.00pm hasallowed Hy-Tec to despatch trucks earlier in the moming so as to minimise the impacts of the Quary trucks during commuter peaks and during operation of the moming school zones along the Great Westem Highway. During the aftemoon, the number of trucks despatched from the Quary is generally lower than during the moming, and the number of truckstravelling on the Great Westem Highway during the commuter peak and school zone periods is low.

Hy-Tec's management of despatch times benefits the loc al communities in Hartley and throughout the Blue Mountains by reducing the impact of the truck traffic during the more sensitive hours, but also benefits Hy -Tec by reducing the number of truck trips made at times when traffic speedsare lower due to either school zone limits or inc reased demand.

On the peak days at the existing despatch rate of 750,000 tpa, the transportation of Quary products contributes a pproximately 285 truck trips per weekday on the Great Westem Highway through the Blue Mountains, a nd approximately 15 truck trips per weekday on the Great Westem Highway west of J enolan Caves Road. This is equivalent to an average of 17 truck trips per hour through the Blue Mountains, and 1 truck trip per hour west of J enolan CavesRoad.

3.12 Road Safety Review

3.12.1 Hartley Area

Validated crash data wasobtained from the RMS for the most recent five year period a vailable, being from 2008 to 2012 inclusive. Provisional data for part of 2013 was a lso provided, however that provisional data rema ins incomplete and should not be relied on. The data did not include any crashes during the provisional period.

The data is based on crashes reported to the Police, and included J enolan CavesRoad between the Great Westem Highway and McKanes Falls Road, a distance of approximately 6 km . Over the five years, 21 crashes were reported. Of these, 19 crashes oc cured between the Quarm Access Road and the Great Westem Highway, including at the intersection with the Great Westem Highway, and these are summarised in Table 3.11.

The locations of the crashes as plotted by RMS are provided in Appendix A. It is noted that while all crashes are included in the graphic, some are overlaid by a crash reported at the same location. In these cases, one ormore crashesare not identified by their ID number and so may not be easily identified in the graphic. The crashes on Jenolan Caves Road were typically on the bends to the north of the Quary Access Road.

Table 3.11: Reported Crash Types J enolan Caves Road North of Quarry Access Road (2008 to 2012)

	$\begin{aligned} & \text { ㄷ } \\ & \text { 夏 } \\ & \frac{0}{8} \\ & \text { N } \end{aligned}$	Multiple Vehicles					Single Vehicle			
		Adjacent Approaches	suograuna 6usoddo	$\begin{aligned} & \text { 듬 } \\ & \text { U } \\ & 0 \\ & 0 \\ & 0 \\ & \mathscr{B} \end{aligned}$	U-tum/ Parking	$\begin{aligned} & \text { 음 } \\ & \frac{0}{0} \\ & 0 \\ & 0 \end{aligned}$			0 3 3 0	$\begin{aligned} & \text { 亡 } \\ & \text { \# } \end{aligned}$
Total Crashes	-	-	2	-	-	-	-	-	17	-
Road Surface Condition										
Dry Road	-	-	-	-	-	-	-	-	8	-
Wet Road	-	-	2	-	-	-	-	-	9	-
Natural Lighting										
Daylight	-	-	2	-	-	-	-	-	14	-
Darkness	-	-	-	-	-	-	-	-	2	-
Dawn	-	-	-	-	-	-	-	-	1	-
Weather										
Fine	-	-	-	-	-	-	-	-	6	-
Fog ormist	-	-	-	-	-	-	-	-	1	-
Overcast	-	-	-	-	-	-	-	-	3	-
Raining	-	-	2	-	-	-	-	-	7	-
Vehicle Type										
Motorcycle	-	-	-	-	-	-	-	-	6	-
Car, 4WD	-	-	2	-	-	-	-	-	9	-
Light or Large Truck	-	-	-	-	-	-	-	-	1	-
Artic ulated Vehicle	-	-	2	-	-	-	-	-	1	-
Severity of Crash										
Fatal	-	-	1	-	-	-	-	-	-	-
Injury	-	-	-	-	-	-	-	-	8	-
Non-injury	-	-	1	-	-	-	-	-	9	-
Factors ${ }^{\text {A }}$										
Speed	-	-	-	-	-	-	-	-	17	-
Fatigue	-	-	1	-	-	-	-	-	3	-
Alcohol	-	-	-	-	-	-	-	-	-	-
None	-	-	1	-	-	-	-	-	-	-

A More than one factorcan be nominated for a single crash
The majority of crashes involved a single vehicle leaving the carniageway and typically striking an object such as an embankment orfence. Speed was a contributing factor in all of these crash types, and all occurred on bends on J enolan CavesRoad. Half of the reported crashes of thistype occurred on a wet road surface.

The two crashes between vehic lestravelling in opposing directions were each head-on crashes which involved a car (or similar) and semitrailer, one of which was fatal and occurred at the intersection with the Great Westem Highway. In each of these cases, the records suggest that the car (rather than the semitrailer) was travelling on the incorrect side of the road.

The reported crashes oc curred between 6.20am and 8.15 pm , although the majority (18 crashes) occurred between 10.45 am and 6 pm . This suggests that icy road conditions were not a contributing factor to crashes on J enolan Caves Road. Fog or mist was present at the time of one of the crashes, that occurning at 6.20am, involving a semitrailer with speed nominated as a factor.

GTAconsultants

The review of the history of crashes on J enolan CavesRoad indic atesthat although there is no specific location (such asan intersection) with a particularly poor record, the speed of vehicles on bends to the north of Austen Qua my have resulted in drivers losing control of their vehicle.

3.12.2 Blue Mountains Area

Validated crash data wasalso obtained from the RMS for all crashes on the Great Westem Highway between Lapstone and Lithgow for the most recent five year period available, being 1 J uly 2008 to 30 J une 2013 inclusive. A total of 1,327 crashes were reported, as follows:

- 19 fatal crashes, which resulted in in 20 fatalities
- 579 injury c rashes, which resulted in 816 people being injured
- 729 non-casualty crashes.

Crashes are identified by a coding system which groups crash types into general categories such as intersection, overta king, off path. They are then further categorises into specific crash types, such as intersection cross traffic, overtaking cutting in, off path on straight to left, off path to left on right bend into object. Review of the data reveals the following key findings:

- The single most common general crash type was of single vehic les which lost control and left the camiageway. These accounted for 39 percent of all crashes (518 crashes).
- The next most common general crash type was intersection-type crashes, which accounted for 32 percent of all crashes (422 crashes).
- The single most common specific crash type was of single vehic les which lost control on a curve and hit an object, e.g. fence, embankment, tree. This accounted for 355 crashes, or 27 percent of all crashes.
- The next most common specific crash type was rear-end type crashes, which made up 27 percent of all crashes (364 crashes).
- 160 crashes, i.e., 12 percent of all crashes, involved a nigid or artic ulated truck. Of these, approximately 30 percent involved single vehic les which left the camageway, 25 percent were rear end type crashes, 15 percent involved vehic les changing lane, and 13 percent were head on crashes.
- Pedestrianswere involved in 16 crashes.
- Speed wasnominated as a contributing factor in 36 percent of crashes, and fatigue was nominated asa contributing factor in 9 percent of crashes, noting these factors are not mutua lly exc lusive.
- 39 percent of crashes (515 crashes) occured on a wet road surface and 0.5 percent (6 c rashes) occurred on a snow oriced road surface.
- 29 percent (389) crashes occurred during rain, 11 percent (151 c rashes) occurred when overcast, and 2 percent (32 crashes) occurred during fog or mist.
- 30 percent of crashes occ urred on weekend days, and 70 percent on weekdays.
- The worst hours of the day for crashes were 3.00 pm to 4.00 pm (9.4 percent), 4.00 pm to 5.00 pm (7.6 percent), 12.00 pm to 1.00 pm (7.2 percent) and 5.00 pm to 6.00 pm (6.9 percent).

The loc ations of all crashes along the Great Westem Highway between Lapstone and Lithgow are also presented in Appendix A.

3.13 Roadway Capacity and Effic iency

The capacity of a road is defined as the maximum hourly rate at which vehic lescan reasonably be expected to traverse a point or uniform section of a lane or roadway during a given time period under the prevailing roadway, traffic and control conditions. The capacity of a single traffic lane will be affected by factors such asthe pavement width and restricted lateral clearances, the presence of heavy vehicles and grades.

Level of Service (LOS) is defined as a qualitative measure describing the operational conditions within a traffic stream as perceived by drivers and/or passengers. A LOS definition generally describes these conditions in terms of factors such as speed and travel time, freedom to ma noeuvre, traffic intemuptions, comfort, convenience and safety. LOSA provides the best traffic conditions, with no restriction on desired travel speed or overtaking. LOSB, C and D describe progressively worse traffic conditions. LOSE occurs when traffic conditions are at or close to capacity, a nd there is virtually no freedom to select desired speedsorto manoeuvre in the traffic stream. The service flow rate for LOSE is taken as the capacity of a lane or roadway.

Austroads (2013) provides guidelines for the capacity of two lane, two-way rural roads, which in tum, refers to the Highway Capacity Manual (Transportation Research Board [TRB], 2010). TRB (2010) distinguishes between different categories of two lane two-way roads, with Class I being roads on which motorists expect to travel at relatively high speeds. They most often serve long-distance trips or provide connecting links between facilities that serve long-distance trips. Classll roads are those on which motorists do not necessarily expect to travel at high speeds, and may function as access routes to Class I facilities, serve asscenic or rec reational routes or pass through rugged terrain.

On this basis, J enolan CavesRoad and the Quary Access Road would be considered Classll roads. The LOS for Class Il roads is defined only in terms of percent-time-spent-following (PTSF). The LOS criteria for Class Il two-lane highways are as shown in Table 3.12.

Table 3.12: Level of Service Criteria for Class II Two Lane Highways

Level of Service	Percent-Time-Spent-Following
A	≤ 40
B	$>40-55$
C	$>55-70$
E	$>70-85$

TRB (2010) presents detailed methods for calculating the PTSF, however it also presents a ba sic relationship between traffic flow rate and PTSF for base conditions on a two way road. This indicates that below a two way peak hourly two way volume of a round 650 vehic les per hour, the PTSF would typic ally be below 40 percent, and LOS would be A forClass II roads (refer to Table 3.12). Nevertheless, the PTSF for J enolan CavesRoad and Quarry Access Road has been a ssessed based on the surveyed traffic conditions.

The PTSF is estimated from the demand traffic volumes, the directional distribution of that traffic, and the percentage of no-passing zones. As a general review of the existing Levels of Service on the subject roads, the following assumptions/estimates have been made in calculating the PTSF:

- The passenger-car equivalent for heavy vehiclesforcalculation of PTSF 1.8 - this is a factor which is used to take into ac count the influence of heavy vehic les on the flow of traffic on a road, assessing each heavy vehicle as multiple of passengercars. This factor applies where two way traffic volumes are below 600 passengercar units per hour ($\mathrm{pc} / \mathrm{hr}$), a nd assumes that the terrain causes heavy vehicles to reduce their speeds substantially below that of passenger cars, but not to operate at crawl speedsfor any significant length of time or at frequent intervals.
- 100 percent no-passing opportunities along the routes, i.e. along the route, drivers would be restric ted from passing a nother vehicle for the whole length of Jenolan Caves Road between the Quary Access Road and the Great Westem Highway. Jenolan Caves Road has a single travel lane in each direction with no overtaking lanesbetween the Quamy Access Road and the Great Westem Highway, so restrictions on overtaking would generally be as a result of centre line marking which prevents drivers from crossing to the wrong side of the carmiageway to overtake due to sight distance or other constraints.
- Peak 15 minute volumes 33 percent of peak hourly volumes based on the average 15 minute to peak hour ratio from the intersection surveys.

On this basis, the surveyed volumeshave been converted to passenger-c ar units, and the PTSF and Levels of Servic e results estimated in Table 3.13.

Table 3.13: PISF and Levels of Service March 2013

Location	AM Peak Hour				PM Peak Hour			
	Hour Starting	pc/hr	PISF	LOS	Hour Starting	$\mathrm{pc} / \mathrm{hr}$	PISF	LOS
Weekday								
Quary Access Road south of Jenolan Caves Rd	5:00	36	29.6	A	17:00	30	27.1	A
Jenolan Caves Road South of Austen Quary	10:00	98	36.2	A	16:00	93	33.9	A
Jenolan Caves Road North of Austen Quary	11:00	116	36.2	A	16:00	112	35.9	A
Saturday								
Quamy Access Road south of J enolan Caves Rd	5.00	30	28.9	A	12.00	16	27.4	A
Jenolan Caves Road South of Austen Quamy	9.00	135	43.0	B	14.00	85	32.2	A
Jenolan Caves Road North of Austen Quary	10.00	153	44.8	B	14.00	165	41.1	B

The results in Table $\mathbf{3 . 1 3}$ indic ate that based on the assumptions discussed above, the surveyed locations would be expected to experience good Levels of Service with regard to roadway efficiency and delays during the busiest hours.

It should be noted that this LOS is a general measure of the vehicle operating conditions on the roads with regard to the number of vehicles and their potential for interaction with each other. It does not reflect the existing road pavement conditions.

3.14 Intersection Operation

The operating performance of the two key intersections near the Austen Quary have been assessed using SIDRA INTERSECTION ${ }^{3}$ (SIDRA), a computer-based modelling package which calculates intersection performance characteristics, including the degree of saturation, average delays, and levels of service. The degree of saturation, or x-value, is the ratio of the amival rate of vehicles to the capacity. The operating characteristics can be compared with the performance criteria set out in Table 3.14. It is noted that average delay per vehicle is expressed in secondspervehic le and is measured for the movement with the highest average delay per vehicle at priority intersections such as the two surveyed intersections on J enolan Caves Road.

[^2]Table 3.14: SIDRA Level of Service Criteria

Level of Service (LOS)	Average Delay per vehicle (secs/veh)	Traffic Signals, Roundabout	Give Way \& Stop Sign
A	Less than 14	Good operation	Good operation
B	15 to 28	Good with acceptable delaysand spare capacity	Acceptable delays and spare capacity
C	29 to 42	Satisfactory	Satisfactory, but accident study required
D	53 to 56	Near capacity	Nearcapacity, accident study required
E 70	At capacity, at signals incidents will cause excessive delays	At capacity, requires other control mode	
F	Greaterthan 70	Extra capacity required	Extreme delay, major treatment required

Table 3.15 presents a summary of the existing operation of the two intersections, with full results presented in Appendix C of this report.

Table 3.15: Weekday Intersection Operating Conditions March 2013

Intersection	X-value		Average Delay (sec/veh)		Level of Service	

On the basis of the above assessment, both intersections currently operate at satisfactory levels of service. The a verage delays reported in Table $\mathbf{3 . 1 5}$ at the intersection of J enolan Caves Road with the Great Westem Highway are experienced by the drivers of vehic lestuming right out of J enolan Caves Road during the moming peak hour (19 vehic lesper hour), a nd left out of J enolan Caves Road during the evening peak hour (2 vehiclesper hour). It is noted that a large component (approximately 17 seconds per vehicle) of the reported delays is the delay associated with physic ally negotiating the tum rather than the delay waiting for a gap in the traffic.

GTAconsultants

4. Future Road Transport Environment

Changescan be expected to occur to the operation of the road network currently used by vehicles travelling to and from the Austen Quamy which are unrelated to the Proposal, and so would occur regardless of the status of the Proposal. These are discussed in this section, which considers the future road network conditions, i.e. until and beyond March 2020. Without the new development consent being sought, the Austen Quamy would cease operating in March 2020, a nd thus, the review of future traffic conditions in this section assumes theoretic al cessation of Austen Quary activity in March 2020.

4.1 Traffic Growth

The technic al paper (Mount Victoria to Lithgow Alliance, 2012b) prepared as part of the assessment process for the works along the Great Westem Highway as described in Section $\mathbf{3 . 1}$ presented the following forecasts of expected traffic volumes on the Great Westem Highway near Forty Bends.

Table 4.1: Traffic Forecasts on the Great Westem Highway near Forty Bends

Year	Daily (vehicles/ day)		AM Peak (velhicles/ hour)		PM Peak (vehicles/ hour)	
	Eastbound	Westbound	Eastbound	Westbound	Eastbound	Westbound
2011	3,950	3,950	220	260	350	300
2015	4,200	4,200	230	270	380	320
2025	4,950	4,950	270	320	450	380
2035	5,900	5,900	320	390	530	450

Source: Mount Vic toria to Lithgow Alliance (2012b)
These forec asts suggest that over the period from 2011 to 2035 , traffic volumes on the Great Westem Highway are expected to increase by an a verage of a pproximately 2 percent per year. Traffic counts over the six years to 2012 indicate that heavy vehic le movements have been growing at a rate of about 1.3 percent per annum and light vehicle movement have been growing at a rate of about 1.7 percent per annum (Mt Victoria to Lithgow Alliance, 2012c). Adoption of a 2 percent per annum growth rate for both light and heavy vehic les is therefore considered to be robust.

Based on the existing traffic volumes on the Great Westem Highway at various locations presented in Section 3.1, and the daily and peak hour forec asts for the Great Westem Highway at Forty Bends (Table 4.1) from the RMS work for the highway upgrade program, two way traffic volumes at locations on the Great Westem Highway have been developed and are presented below. Table 4.2 presents the daily and peak hour forecasts for the same years as the RMS forecasts (2015, 2025 and 2035), as well as interpolated results for years 2013 and 2020.

Table 4.2: General Traffic Forecasts on the Great Westem Highway between Mount Victoria and Lithgow

Location	2011AB	2013	2015 ${ }^{\text {A }}$	2020	2025 ${ }^{\text {A }}$	2035 ${ }^{\text {A }}$
Daily (vehicles/day)						
Forty Bends	7,900	8,150	8,400	9,150	9,900	11,800
Hartley	8,800	9,100	9,400	10,250	11,100	13,200
Little Hartley	10,400	10,750	11,100	12,100	13,100	15,600
Victoria Pass	14,000	14,450	14,900	16,250	17,600	21,000
AM Peak (vehicles/ hour)						
Forty Bends	480	490	500	550	590	710
Hartley	530	550	560	610	660	790
Little Hartley	630	650	660	720	780	940
Victoria Pass	850	870	890	970	1,050	1,260

PM Peak (vehicles/hour)

Forty Bends	650	680	700	770	830	980
Hartley	720	750	780	860	930	1,100
Little Hartley	860	900	930	1,020	1,100	1,300
Victoria Pass	1,150	1,200	1,240	1,360	1,480	1,740

A RMS daily forecasts
B RMS peak hourly forec asts
A number of reports prepared by orfor RMS (GHD 2006, Transport \& Urban Planning 2009, Roads and Traffic Authority 2006, and GHD 2002) were reviewed to obtain traffic forecasts along the Great Westem Highway to the east of the Austen Quarry. It is noted that the reports were prepared between 2002 and 2009, and so predate the forecasts in Table 4.1, and the observed growth rates of 1.3 and 1.7 percent per annum for light and heavy vehic les respectively disc ussed above. The reports suggested that the likely traffic growth on the Great Westem Highway between Woodford and Wentworth Falls would be about 2.2 to 2.4 percent per annum until 2030. The data has been interpolated or extra polated where required to generate forecasts for the same future time horizons as in Table 4.2. An extract showing the original forecasts from each of the reports a re presented in Appendix D.

Table 4.3 summa rises the AADTforec asts for the daily and peak hourly flows at four loc ations on the Great Westem Highway through the Blue Mountains to the east of Jenolan Caves Road, and also presents forecasts at the five additional loc ations which are listed in Table 3.1, adopting a 2 percent growth rate per annum to generate forecasts for the same future time horizons as in Table 4.2.

Table 4.3: General Traffic Forecasts on the Great Westem Highway Through the Blue Mountains

Location	2015	2020	2025	2030	2035
Daily (vehicles/day)					
Blackheath* (99.231)	17,990	19,590	21,200	22,810	24,410
Medlow Bath* (99.913)	19,750	21,580	23,410	25,240	27,070
Leura* (99.042)	28,600	31,150	33,700	36,260	38,810
Wentworth Falls East	30,070\#	32,850	35,630\#	38,410	41,190\#
Bullabura* (99.043)	23,460	25,670	27,880	30,090	32,310
Bullabura	26,520\#	29,000\#	31,480\#	33,960\#	36,450
Lawson	28,900\#	31,340	33,810\#	36,280	38,750
Woodford-Hazelbrook	28,510	31,020	33,530	36,040	38,550
Faulc onbridge* (99.914)	28,690	31,440	34,200	36,960	39,720
Peak Hourly (vehicles/ hour)^					
Blackheath* (99.231)	1,800	1,960	2,120	2,280	2,440
Medlow Bath* (99.913)	1,980	2,160	2,340	2,520	2,710
Leura* (99.042)	2,860	3,120	3,370	3,630	3,880
Wentworth Falls East	2400\#	2,620	2860\#	3,080	3300\#
Bullabura* (99.043)	2,350	2,570	2,790	3,010	3,230
Bullabura	2,650	2,900	3,150	3,400	3,650
Lawson	2,280\#	2,480	2,680\#	2,860	3,060
Woodford-Hazelbrook	2,280	2,480	2,680	2,880	3,080
Faulc onbridge* (99.914)	2,870	3,140	3,420	3,700	3,970

Notes: Volumes are rounded to the nearest ten vehicles; \# Interpolated flows; (99.231) RMS Count Station Numbers;

* Volumes from Table 3.1 with 2\% per annum growth; ^ RMS reported only one directional flows with 50/50 split, reported volumes are double the one way volumes.

These are general forecasts which do not specific ally consider the Austen Quary traffic or the relative levels of activity at the Quary. It is considered that these forecasts in Table 4.2 and Table 4.3 should be assumed to relate to average day traffic associated with the Austen Quamy, i.e. generation of 166 truck trips perday in 2013 with a pproximately 95 percent (158 tripsper weekday) on the Great Westem Highway east of J enolan Caves Road. Furthemore, it is assumed that these general forecasts assume the transport task of the Austen Quary would not change signific a ntly over time.

4.2 Changes to the Road Network

RMS has published concept designs for a program of upgrades to the Great Westem Highway between Mount Victoria and Lithgow. This falls under the Australian and State Govemments' plans for upgrades to the highway between Emu Plains and Lithgow. Curently many sections of the highway have been widened and upgraded orare underconstruction between Emu Plains and Katoomba and around Medlow Bath.

4.2.1 Great Westem Highway Mount Victoria to Lithgow

RMS has published the following program of works to be completed by mid-2016:

- widening and re-alignment of the Great Westem Highway to three lanes at the Forty Bends, east of Lithgow
- delivery of the Safety Enhancement Program between Lithgow and Mount Victoria, including Little Hartley, Hartley and the J enolan Caves Road intersection where major works were previously proposed
- fina lising concept design of the highway upgrade from Lithgow to Mount Victoria
- further planning for highway upgrades between Katoomba and Mount Victoria.

Generally, the Great Westem Highway upgrades between Mount Victoria and Lithgow include locations of road widening to three lanes, realignment at Victoria Pass, upgraded intersection treatments with tuming bays, separation of opposing traffic lanes, increased shoulder widths and wa ming signs as well as revised speed zones.

The Hartley Valley safety upgrading Review of Environmental Factors (REF) (SKM, 2013) identifies options for the treatment of the intersection of the Great Westem Highway with J enolan Caves Road and Blackmans Creek Road. The prefered option includes retention of the existing alignment of the intersection, however the diverge point from one to two lanes for westbound traffic would be relocated to the west of the intersection. The existing dedicated left and right tum lanes would be retained, and the right tum lane would be extended to provide additional deceleration length for heavy vehiclestuming into Jenolan Caves Road from the west. It is noted that the final design is not yet known, with consultation and design development continuing for the Hartley Valley safety upgrade.

Options for provision of an interchange to replace the at-grade intersection of J enolan Caves Road with the Great Westem Highway and Blackmans Creek Road have been considered by the Mount Vic toria to Lithgow Alliance (2012c) as part of the Great Westem Highway Upgrade concept design. The preferred interchange option would provide a new alignment for the Great Westem Highway, and the existing highway would be utilised in part for a westbound off ramp to Jenolan CavesRoad and a westbound onramp from J enolan Caves Road. Accessto Jenolan CavesRoad from the west would be via a new off-ramp and roadway commencing to the west of Jenolan CavesRoad, which would pass to the north of the Great Westem Highway and pass under the new highway to connect to Jenolan Caves Road. Access to the Great Westem Highway eastbound from J enolan Caves Road would be via this same roadway, thus vehic les would travel north on J enolan CavesRoad under the highway, then west to a new on-ramp to access the highway eastbound.

It is noted that the final design for any treatment in this area is not yet known, with community consultation having been undertaken and design development and environmental assessments continuing forthe Hartley Valley safety upgrade.

4.2.2 Great Westem Highwa y Emu Pla ins to Mount Vic to ria

RMS hascommenced the following works on the Great Westem Highway between Emu Plains and Mount Victoria:

- widening the existing two lane highway to a four lane, divided highway between Ridge Street, Lawson and 400m west of Genevieve Road, Bullabura (completion is expected in 2015)
- widening the existing two lane highway to a four lane, divided highway between 400 m west of Genevieve Road, Bullaburra and Tableland Road, Wentworth Falls (completion is expected in late 2014)
- widening the existing highway to a four lane, divided road between Winboume Road, Hazelbrook and Station Street, Woodford.

4.2.3 Pedestrian and Cyc list Facilities

RMS indic ates that pedestrian safety improvements along Great Westem Highway completed and/or planned include:

- new or upgraded pedestrian signals in towns
- pedestrian refuges along some sections of the highway
- pedestrian over or underpasses
- off road shared paths, and
- new pedestrian bridges at Blaxland, Wa mimoo, Va lley Heights, Faulconbridge, Hazelbrook, Leura and Shell Comer.

Cyclists have benefited from the completed upgrade works along the Great Westem Highway, and will benefit from those works still to be completed. RMS indicatesthat features of the Great Westem Highway upgrades which benefit cyc lists include:

- reduced speed limits in towns
- widening of the highway
- provision of overtaking lanes
- improvements to intersections crossing the highway in townships
- provision of bicycle facilities a long the highway
- tuming lanesto provide safer tums between the highway and local roads
- elimination of dangerous bends by realigning or widening the highway
- extra lanes and separation of opposing traffic flows
- consistent line-marking and signposting, and
- widening of bridges.

In some areas along Great Westem Highway, progressive upgrade works and maintenance will result in sealed shoulders for cyclists, as well as connections with local cycleways in towns. In its Potential Treatments Report for the section of the highway between Katoomba and Mount Victoria, RMS suggests that improvements to pedestrian and cyc list facilities may include off-road shared paths or tracks, particularly in townships, and widening of road shoulders to minimum of two metres for cyclist access.

4.3 Austen Quamy Traffic Generation to March 2020

Under the curent development consent, the Austen Quary will continue to operate until March 2020, after which it would be decommissioned, unless a further development consent is approved. For the purpose of this assessment, it has been assumed that the Austen Quamy could operate at its highest permitted despatch level until March 2020, generating some 1.1 Mtpa of quamy products per year, compared with its current level of 750,000 tpa.

On this basis, the transportation of quarry products from the Austen Quary could generate an average of a pproximately 250 trucks trips per weekday, and an estimated peak of 360 truck trips on a weekday until March 2020. On Saturdays, the Austen Quarm could generate an average of approximately 148 truck trips per Saturday, and an estimated peak of 210 truck trips per day until March 2020. These trips would be associated with the transportation of quary products. As noted previously, this is considered to be a conserva tively high estimate of peak future conditions, and would occuron approximately five days throughout the year. The assessment which follows is based on this peak day activity, i.e. 360 truck trips on a weekday and 210 truck trips on a Saturday, with the majority of customers located in the Sydney metropolitan area, i.e. largertrucks are used for transporting quarry products and the majority of trips are to and from the east along the Great Westem Highway.

For peak days with local customers, the transportation of quamy products would generate an average of 300 truck trips on a weekday and an estimated peak of 500 truck trips on a weekday. This would occur on only one ortwo daysthroughout the year. As this level of activity would be so infrequent, a full a ssessment of its impacts is not wa ranted. The implications of these occasional peak local activity days are however discussed in Section 5.8 of this report.

The increase in product despatch from the current level to the peak level of 1.1 Mtpa would require up to four additional employees, and is assumed to increase the number of visitors and contactors visiting the site each day, which would increase the light vehicle traffic generation, i.e.:

- 20 workers a miving and departing at start and end of shift = 40 vehic le tripsperday
- 12 visitors or contrac tors a riving and departing $=24$ vehic le trips per weekday
- 5 visitors or contrac tors a miving and departing $=10$ vehicle trips per Saturday.

The higher level of activity than surveyed at the Austen Qua my would be likely to also result in an increase in trips generated by heavy vehic les not associated directly with product transport. This a ssessment assumes an increase in such trips from seven "other" trips per weekday as surveyed in March 2013, associated with an average 162 product truck trips perday (Section 3.10), to 11 heavy vehicle "other" trips peraverage weekday with an average of 250 product truck trips perday. Peak days of transportation of products are not expected to further increase the "other" heavy vehicle trips which are associated with vistors a nd deliveries.

Table 4.4 summarises the future peak weekday and Saturday traffic generated by the Austen Quary and its distribution on J enolan Caves Road during the peak hours previously identified. This assumes that the Quary traffic is spread through the day as it is at present.

Table 4.4: Peak Day Austen Quarry Traffic Year 2014 to 2020 (vehicles/ hour)

	Quamy Access Road			Jenolan Caves Road North of Quary Access Road			Jenolan Caves Road South of Quany Access Road		
	Light	Heavy	Total	Light	Heavy	Total	Light	Heavy	Total
Weekday									
5.00 to 6.00	8	31	39	6	31	37	1	0	1
10.00 to 11.00	1	38	39	1	38	39	0	0	0
11.00 to 12.00	2	27	29	2	27	29	0	0	0
16.00 to 17.00	4	24	28	3	24	27	1	0	1
17.00 to 18.00	10	20	29	8	20	28	2	0	2
Weekday Total (vehicles/day)	64	370	434	52	370	422	12	0	12
Saturday									
5.00 to 6.00	10	33	43	8	33	41	2	0	2
11.00 to 12.00	7	35	42	6	35	41	1	0	1
12.00 to 13.00	5	17	22	4	17	21	1	0	1
14.00 to 15.00	1	1	2	1	1	2	0	0	0
Saturday Total (vehicles/day)	50	210	260	41	210	251	9	0	9

Peak day with Austen Quamy operating at 1.1 Mpta, up to year 2020, peakexpected to occur approximately 5 times per year

On the peak day, the transportation of Quary products would contribute approximately 342 truck trips per day on the Great Westem Highway through the Blue Mountains, and approximately 18 truck tripsper day on the Great Westem Highway west of J enolan Caves Road. Comparing this with the existing peak day at the curent despatch rate of 750,000 tpa, this represents an increase of 57 truck trips per day on the Great Westem Highway through the Blue Mountains and three truck trips per day west of J enolan Caves Road. On average, the increase would be three truck tripsper hour through the Blue Mountains, and less than one truck trip per hour west of J enolan Caves Road.

4.4 Future Traffic Volumes to 2020

The volume of traffic on the road network can be expected to increase due to general growth in the road transport task demand. As a guide to the potential future traffic volumes on J enolan Caves Road, a growth rate of 2 percent per annum has been applied to the background traffic which is not associated with the Austen Quary. This is consistent with the forec asts presented by RMS on the Great Westem Highway (Table 4.2 and Table 4.3) up to year 2035. The resulting traffic volumes on the Quamy Access Road and J enolan Caves Road are summarised in Table 4.5 for weekday and Saturday conditions for the final year of operations at the Austen Quamy under its c urrent development consent (Year 2020).

This assumesthat any growth in non-quary traffic would occur across the day in proportion to the existing traffic volumes, i.e. a 14 percent increase in total weekday traffic would result in a 14 percent increase in hourly traffic foreach and every hour of the day. In reality, additional traffic is more likely to spread through the day, lengthening the time over which peak volumes occur rather than proportionally increasing the peak volume.

It is assumed that the weekday traffic currently generated by the adjacent leased land would continue in the future while the Austen Quary operates, and would increase at the same rate of 2 percent per a nnum as the othertraffic not associated with the Austen Qua my operations.

Table 4.5: Peak Day Two Way Traffic in 2020 (vehicles/ hour)

	Quamy Access Road			Jenolan Caves Road North of Quany Access Road			Jenolan Caves Road South of Quary Access Road		
	Light	Heavy	Total	Light	Heavy	Total	Light	Heavy	Total
Weekday									
5.00 to 6.00	13	31	43	21	40	61	16	8	24
10.00 to 11.00	2	38	40	63	57	119	66	25	91
11.00 to 12.00	4	27	31	66	49	116	61	20	81
16.00 to 17.00	7	24	30	86	35	121	82	13	95
17.00 to 18.00	16	20	36	75	24	99	65	7	72
Weekday Total (vehicles/day)	102	370	472	943	583	1,526	853	226	1,079
Saturday									
5.00 to 6.00	10	33	43	16	38	53	9	7	16
11.00 to 12.00	7	35	42	121	54	176	136	9	145
12.00 to 13.00	5	17	22	106	21	127	110	7	116
14.00 to 15.00	1	1	2	122	8	130	117	6	123
Saturday Total (vehicles/day)	50	210	260	1,352	289	1,641	1,348	97	1,445

Peak day with the Austen Quamy operating at 1.1 Mtpa, expected to occur approximately 5 times peryearplus background growth
Table 4.5 demonstrates that with the combined effects of background growth and peak day activity at the Austen Quary, J enolan CavesRoad would camy up to approximately 1,530 vehic lesperday on a weekday and 1,640 vehic les perday on a Saturday to the north of Austen Quary in 2020.

Hy -Tec hasadvised that there is generally a maximum of 20 truck loads of quary products (typically of 32.5 t per load) able to be despatched in any one hour (generating up to 40 heavy vehicle trips in that hour), however this can be exceeded undercertain circ umstances, i.e. when loading and despatching the smaller 15 t capacity rigid trucks, when up to 25 truck loads may be despatched in an hour, generating 50 truck trips per hour, albeit to local destinations. The results in Table 4.5 rema in within the typic al ca pacity of 40 truck trips per hour.

Table 4.6 presents indic ative future traffic volumes on the Great Westem Highway in 2020. These are based on the forecasts on the Great Westem Highway presented by RMS, and adjusted to reflect only the inc reased truck trips associated with the transportation of quamy product, as this is the major component of traffic generated by the Quamy. Vehicle trips associated with the movement of employees and contractors are assumed to be included in the background forecasts presented by RMS (Table 4.2) and no adjustments have been made forchanges in those vehic le trips overtime. The quary products transported to the east are assumed to travel to the Sydney metropolitan area, i.e. through the Blue Mounta ins, via the Great Westem Highway.

Table 4.6: Indicative Peak Day Traffic Volumes on the Great Westem Highway 2020

Location	AM Peak (vehicles/ hour)	PM Peak (vehicles/hour)	Daily (vehicles/day)
Forty Bends	550	770	9,160
Hartley	620	870	10,434
Little Hartley	730	1,030	12,284
Victoria Pass	980	1,370	16,434
Blackheath	1,970	1,970	19,774
Medlow Bath	2,170	2,170	21,764
Leura	3,130	3,130	31,334
Wentworth Falls East	2,630	2,630	33,034
Bullabura (Stn 99.043)	2,580	2,580	25,854
Bullabura	2,910	2,910	29,184
La wson	2,490	2,490	31,524
Woodford-Hazelbrook	3,150	3,150	31,204
Faulc onbridge	2,490	31,624	

Austen Quary operating at 1.1Mtpa, peak day expected to occurapproximately 5 times peryear.
Table 4.6 indic ates that traffic volumes on the Great Westem Highway would be expected to increase to approximately 16,440 vehic les per day at Victoria Pass on a peak operating day at the Austen Quary in 2020.

Assuming that the aforementioned general forecasts of total traffic on the Great Westem Highway included an average of 12 percent heavy vehicles on the Great Westem Highway, the contribution of the Quary to heavy vehic les on the Great Westem Highway on a peak day in 2020 is summarised in Table 4.7.

Table 4.7: Indicative Peak Day Heavy Vehicle Traffic on the Great Westem Highway 2020

Location	Pealk Hour (heavy vehicles/ hour)		Daily (heavy vehicles/ day)	
	Total	Quamy	Totall	Quany
Forty Bends	92	1	1,108	18
Hartley	113	20	1,414	342
Little Hartley	132	20	1,636	342
Victoria Pass	173	20	2,134	342
Blackheath	245	20	2,535	342
Medlow Bath	269	20	3,922	342
Leura	384	20	3,126	342
Wentworth FallsEast	324	20	3,664	342
Bullabura (Stn 99.043)	318	20	3,945	342
Bullabura	358	20	3,906	342
La wson	308	20	3,957	342
Woodford-Hazelbrook	308	20	342	
Faulconbridge	387			342

Austen Quary operating at 1.1Mtpa, peak day expected to occurapproximately 5 times peryear.
Assumes background weekday traffic is 12 percent heavy vehicles
These results demonstrate that the contribution of the Austen Quary to total heavy vehic les on the Great Westem Highway on peak dayswould decrease through the Blue Mounta ins to the east. The overall proportion of heavy vehic les on the Great Westem Highway would rema in at a similar level to the existing situation, with an increase from 12 percent to approximately 13 percent heavy vehicles on the peak days of activity at the Austen Quamy, expected approximately five times per year.

4.5 Future Traffic Volumes Beyond 2020

Under the current development consent, the Austen Quary will continue to operate until March 2020, after which it would be decommissioned, unless a new development consent is approved. For the purpose of this assessment and for comparison with future conditions with the Proposal, it has been assumed that the Austen Quamy would theoretic ally cease operating in March 2020.

As above, a growth rate of 2 percent per a nnum has been applied, which is consistent with forecasts presented by RMS on the Great Westem Highway (Table 4.2) up to year 2035. This future horizon was selected as it includes the effects of longer term growth for 15 years beyond the end of the current Austen Quamy approval. It is noted that this is longer than the ten years' growth typic ally assessed for a development, and thus is considered to ensure a robust review of the potential future traffic on the key routes. The resulting traffic volumes on J enolan Caves Road are summarised in Table 4.8 for weekday and Saturday conditions for the long term sc enario (Year 2035).

This assumes that any growth in non-qua my traffic would occur across the day in proportion to the existing traffic volumes, i.e. a 14 percent inc rease in total weekday traffic would result in a 14 percent increase in hourly traffic foreach a nd every hour of the day. In reality, additional traffic is more likely to spread through the day, lengthening the time over which peak volumesoccur ratherthan proportionally increasing the peak volume.

It is assumed that with the theoretic al closure of the Austen Quarry, the weekday traffic currently generated by the adjacent leased land would also cease in 2020.

Table 4.8: Two Way Traffic in 2035 (vehicles/ hour)*

	Jenolan Caves Road North of Quary Access Road			Jenolan Caves Road South of Quamy Access Road		
	Light	Heavy	Total	Light	Heavy	Total
Weekday						
5.00 to 6.00	13	12	25	18	10	28
10.00 to 11.00	77	24	101	83	32	115
11.00 to 12.00	80	28	108	76	25	101
16.00 to 17.00	102	14	116	102	17	119
17.00 to 18.00	78	6	84	79	9	88
Weekday Total (vehic les/day)	1,085	269	1,354	1,054	286	1,340
Saturday						
5.00 to 6.00	9	6	16	9	9	18
11.00 to 12.00	146	24	170	170	12	181
12.00 to 13.00	129	5	134	137	9	146
14.00 to 15.00	153	8	161	148	7	155
Saturday Total (vehic les/day)	1,656	99	1,756	1,692	122	1,814

*Assumes that Austen Quamy theoretic a lly ceases operating in 2020
Table 4.8 demonstrates that with the combined effects of background growth and theoretic al cessation of the Austen Quarry operations, Jenolan CavesRoad would camy up to approximately 1,360 vehic lesper day on a weekday and 1,760 vehic les perday on a Saturday to the north of Austen Quamy in 2020.

Table 4.9 presents indic ative future traffic volumes on the Great Westem Highway in 2035. These are based on the forecasts on the Great Westem Highway presented by RMS, and adjusted to reflect only the removal of truck trips associated with the transportation of quary products from the Austen Quarm after its theoretic al closure in 2020.

Table 4.9: Indicative Traffic Volumes on the Great Westem Highway 2035*

Location	AM Peak (vehicles/ hour)	PM Peak (vehicles/ hour)	Daily (vehicles/day)
Forty Bends	709	979	11,792
Hartley	780	1,090	13,042
Little Hartley	930	1,290	15,442
Victoria Pass	1,250	1,730	20,842
Blackheath	2,430	2,430	24,252
Medlow Bath	2,700	2,700	26,912
Leura	3,870	3,870	38,652
Wentworth Falls East	3,290	3,290	41,032
Bullabura (Stn 99.043)	3,220	3,220	32,152
Bullabura	3,640	3,640	36,292
La wson	3,050	3,050	38,592
Woodford-Hazelbrook	3,960	3,070	38,392
Faulconbridge	3,960	39,562	

* Assumes that Austen Qua my theoretic ally ceases operating in 2020

Table 4.9 indic atesthat traffic volumes on the Great Westem Highway would be expected to increase to approximately 20,840 vehic les per day at Victoria Pass in 2035 and in the order of 40000 vehicles per day at Faulconbridge. With the theoretical cessation of activity at the Austen Quary, it is expected that background traffic on the Great Westem Highway would include 8 to 12 percent heavy vehic les.

4.6 Future Roadway Capacity and Effic iency to 2020

As a general indic ation of the effects of background growth on the Level of Service experienced by drivers along Jenolan Caves Road, the PTSF has been recalculated for a peak day during the final year of the existing approved operation of the Austen Quarry, i.e. 2020. The results are summarised in Table 4.10.

Table 4.10: Future Peak Day Midblock Levels of Service 2020

Location	AM Peak Hour				PM Peak Hour			
	Hour Start	$\mathrm{pc} / \mathrm{hr}$	PISF	LOS	Hour Start	$\mathrm{pc} / \mathrm{hr}$	PISF	LOS
Weekday								
J enolan Caves Road South of Quary Access Road	10:00	111	37.6	A	16:00	106	35.2	A
Jenolan Caves Road North of Quamy Access Road	11:00	155	39.2	A	16:00	148	38.6	A
Saturday								
Jenolan Caves Road South of Qua my Access Road	9:00	126	38.2	A	14:00	128	37.5	A
J enolan Caves Road North of Quary Access Road	10:00	197	49.0	B	14:00	136	37.3	A

Austen Quamy operating at 1.1 Mtpa up to year 2020, peak expected to occur approximately 5 times per year
These results indicate that the traffic volumes on J enolan Caves Road would remain sufficiently low with background growth in traffic that drivers would continue to experience good levels of service when driving along it on both a weekday and Saturday with peak activity at the Austen Quary.

Along the Great Westem Highway, a number of complex factors will influence the capacity and perceived service levels experienced by drivers. Drivers' expectations would vary signific a ntly between sections of road within Blue Mountains villages (and from one village to another) a nd those between the villa ges. Austroads (2013) presents a general guide to Levels of Service for unintemupted traffic flow on multi-lane roads, i.e. outside of the influences of signals and intersections. The LOS guide is based on travel speeds and vehicle densities to develop thresholds for maximum service flow ratesper lane for various speed environments. These have been compared with the estimated traffic volumes presented in

Table 4.6 to provide a guide to expected future LOS during peak hours along the Great Westem Highway. This assumes vehicles travel at a free-flow speed of 8 to $10 \mathrm{~km} / \mathrm{h}$ above the posted speed limit, as suggested by Austroads (2013).

Table 4.11: Indicative Future Peak Day Levels of Service on the Great Westem Highway 2020

Location	Total Vehicles per Hour	Number of Lanes	Speed Limit	Level of Service
Forty Bends	770	3	80	A
Hartley	870	3	90	A
Little Hartley	1,030	3	90	A
Victoria Pass	1,370	3	60	A
Leura	3,130	4	80	B
Wentworth FallsEast	2,630	4	80	B
Bullaburra	2,910	4	80	B
Lawson	2,490	4	80	B
Woodford-Hazelbrook	2,490	4	70	B
Faulconbridge	3,150			

Levels of Service from Table 4.4 of Austroads (2013)
The results demonstrate that in 2020, levels of service along the Great Westem Highway are expected to be B on a peak day for the Austen Quary.

4.7 Future Roadway Capacity and Effic iency Beyond 2020

As an indication of the effects of longer term background growth on the Level of Service experienced by drivers along J enolan Caves Road, the PTSF has been rec alc ulated for a weekday and Saturday in 2035. The results a re summa rised in Table 4.12.

Table 4.12: Future Midblock Levels of Service 2035*

Location	AM Peak Hour				PM Peak Hour			
	Hour Start	$\mathrm{pc} / \mathrm{hr}$	PISF	LOS	Hour Start	$\mathrm{pc} / \mathrm{hr}$	PISF	LOS
Weekday								
Jenolan CavesRoad South of Quamy Access Road	10:00	140	40.5	B	16:00	132	37.9	A
Jenolan CavesRoad North of Quary Access Road	11:00	131	37.8	A	16:00	127	37.4	A
Saturday								
Jenolan CavesRoad South of Quamy Access Road	9:00	158	41.4	B	14:00	161	40.8	B
Jenolan CavesRoad North of Quamy Access Road	10:00	192	54.5	B	14:00	168	40.4	B

* Assumes that Austen Quamy theoretic ally ceases operating in 2020

These results indicate that the traffic volumes on Jenolan CavesRoad would remain suffic iently low with background growth in traffic that drivers would continue to experience good levels of service when driving along it on both a weekday and Saturday in the longer term after the theoretic al cessation of a ctivity at the Austen Quamy under the current development consent.

Indic a tive Levels of Service a long the Great Westem Highway in 2035 are presented in Table 4.13, based on the highest estimated peak hour traffic volumespresented in Table 4.9 to provide a guide to expected future LOS during peak hours along the Great Westem Highway.

Table 4.13: Indic ative Future Peak Day Levels of Service on the Great Westem Highway 2035*

Location	Total Vehicles per Hour	Number of Lanes	Speed Limit	Levell of Service
Forty Bends	979	3	80	A
Hartley	1,090	3	90	A
Little Hartley	1,290	3	90	A
Victoria Pass	1,730	3	60	B
Leura	3,870	4	80	C
Wentworth FallsEast	3,290	4	80	B
Bullabura	3,640	4	80	B
Lawson	3,050	4	80	B
Woodford-Hazelbrook	3,070	4	70	C
Faulconbridge	3,960			

* Assumes that Austen Qua my theoretic ally ceases operating in 2020

Levels of Service from Table 4.4 of Austroads (2013)
The results demonstrate that in 2035, levels of service along the Great Westem Highway are expected to be C.

4.8 Future Intersection Operation to 2020

The weekday peak hour operating characteristics of the surveyed intersections have been reassessed to quantify the future conditions in the final year of operations at the Austen Quary under the current approval. The results are summarised in Table 4.14, a nd the results by movement are presented in Appendix C. As noted, the forecast tuming movements at the intersections assume that growth in background traffic will increase the volume in each hour of the day pro rata to the daily increase. The SIDRA a ssessment does not take into account a ny upgrades which may occur to the layout of the intersection.

Table 4.14: Future Peak Weekday Intersection Operating Conditions 2020

Intersection	X-value		Average Delay (sec/veh)		Level of Service	

Peak day with the Austen Quamy operating at 1.1 Mtpa, peakexpected to occurapproximately 5 times per year
The results in Table 4.14 indic ate that the intersections would operate satisfactorily, noting that Level of Service D is the upper limit for acceptable Level of Service. At the intersection of the Great Westem Highway and J enolan CavesRoad, the movements with the highest a verage delay per vehic le would be the right tum out of Jenolan CavesRoad during the moming peak, and the left tum out of Jenolan Caves Road during the evening peak. It is noted that the volume tuming left during the evening peak hour is only four vehic les per hour.

Comparing these results with the existing conditions (Table 3.15), the results suggest that the average delays experienced by these drivers would increase noticeably, although the increase in the number of vehicles on those movements would be very low. This is partly due to the assumed high proportion of heavy vehicles, which take longer to tum and require longer gaps in the opposing traffic. A signific ant proportion of the reported delays is the forecast delay associated with physically negotiating the tum rather than the delay waiting for a suitable gap in the traffic.

4.9 Future Intersection Operation Beyond 2020

The weekday peak hour operating characteristics of the surveyed intersections have been reassessed to quantify the future conditions in the longer term after the theoretic al cessation of activity at the Austen Quamy under the current approval. The results are summarised in Table 4.15, and the results by movement are presented in Appendix C. As noted, the forecast tuming movements at the intersections assume that growth in background traffic will increase the volume in each hour of the day pro rata to the daily increase. The SIDRA assessment does not take into account any upgrades which may occ ur to the layout of the intersection.

Table 4.15: Future Peak Weekday Intersection Operating Conditions 2035*

Intersection	X-value		Average Delay (sec/veh)		Levell of Service	

* Assumes that Austen Quamy theoretically ceases operating in 2020

The results in Table 4.15 indic ate that the intersections would operate satisfactorily in the longerterm, noting that Level of Service D is the upper limit for acceptable Level of Service. At the intersection of the Great Westem Highway and J enolan CavesRoad, the movements with the highest average delay per vehicle would be the right tum out of J enolan Caves Road during the moming peak, and the left tum out of Jenolan Caves Road during the evening peak. It is noted that the volume tuming left during the evening peak hour is only six vehiclesper hour, thus this delay would be experienced by only a small number of vehic les. A signific ant proportion of the reported delays is the forecast delay assoc iated with physic ally negotiating the tum ratherthan the delay waiting for a gap in the traffic.

4.10 Future Pedestrians, Cyc lists and Buses

The expected changes to the road network and traffic volumes described in this section are not expected to result in any signific ant change to the number of pedestrians, cyclists or buses operating in the local region. The number of pedestrians travelling along or acrossJ enolan CavesRoad in proximity to the Quary would remain negligible, and there is not expected to be a significant increase in demand for cyclist activity in the immediate area. The bus transport task is expected to rema in at similar levels to the existing, with any future increase in demand being met by additional servic es operated by the existing service providers.

The number of truck trips generated by the Austen Quarry on a peak day, once spread over the operating hours of the Quamy and taking into account Hy-Tec's management of despatch times (Section 3.11), would have a negligible effect on the delays experienced by pedestrianscrossing the Great Westem Highway through the villages of the Blue Mountain, nor on exposure between cyc lists and trucks. Hy -Tec's management of despatch times also minimises the potential interaction between quarry traffic and school buses.

4.11 Peak Local C ustomer Activity to 2020

As disc ussed (Section 2.2), when quamy products a re required for local road works customers, smaller 15t capacity rigid trucks are used for the local trips rather than the larger articulated vehic les. As the capacity of the rigid trucks is less than that of the articulated trucks, the same tonnage of qua my products generates additional truck trips when the smaller trucks are used.

With a combination of Sydney and local customers, the a verage day quamy activity is estimated to increase from an average of 125 loads per day to an average of 150 loads perday, generating 300 truck
trips perday. On a peak day with local customers, it may increase to 250 loadsperday, generating 500 truck trips perday. This higher trip generation would only oc cur on one ortwo days peryear, and so is not considered a reasonable basis for assessment of the typic al implic ations of the proposal, however its implications are broadly reviewed below.

The peak local day activity on a weekday would generate an additional 140 truck trips per day on Jenolan CavesRoad above that assessed above. The resulting Levels of Service experienced along Jenolan Caves Road east of Austen Quary on a weekday in 2020 are summarised in Table 4.16.

Table 4.16: Jenolan Caves Road East of Austen Quary PISF and LOS- Peak Local Customers 2020

	Hour Start	pc/hr	PISF	LOS
Weekday AM Peak	$11: 00$	174	41.0	B
Weekday PM Peak	$16: 00$	165	40.1	B

Austen Quamy operating at 1.1 Mtpa with local customers, peak expected to occurapproximately 1 to 2 times per year
The results demonstrate that drivers on J enolan Caves Road would continue to experience good levels of service on the very busiest one or two days per year expected at the Austen Quamy.

With local customers, the distribution of qua my truck traffic at the intersection of J enolan Caves Road with the Great Westem Highway may vary from the typical day in which the majority of trips are made to and from the east. To review the implications of the potential variation in distribution, the operation of the intersection has been reassessed assuming the higher number of truck trips per day and that the majority of those trips are made to and from the west. The results of the a nalysis a re summarised in Table 4.17, which do not take into account any possible upgrading of the intersection.

Table 4.17: J enolan Caves Road/ Great Westem Highway Intersection - Peak Local Customers 2020

	X-value	Average Delay (sec/veh)	Level of Service
Weekday AM Peak	0.16	36.3	C
Weekday PM Peak	0.22	32.0	C

Austen Quamy operating at 1.1 Mtpa with local customers, peakexpected to occurapproximately 1 to 2 times peryear
The results demonstrate that the intersection would operate satisfactorily on the busiest one or two days peryear with local customers in 2020. Despite the higher number of trucks travelling to and from the Quary, the change in the distribution of those truck tripswould take advantage of available capacity at the intersection.

5. Road Environment Impacts of the Proposal

The Proposal would extend the operation of the Austen Quary beyond March 2020. This section reviews the impacts of the extension of the Quary operations by considering the potential peak day activity in the future.

5.1 Austen Quarry Traffic Generation Beyond 2020

As discussed in Section 2.2, the Austen Quarry has been operating at below its a pproved peak operating capacity, and the Proposal would not increase the permissible amount of quary products able to be despatched from the Quamy peryear. The volume of traffic generated by the Quary would therefore not be altered by the Proposal, rather it would permit the Quamy to continue operating beyond 2020. The routes used by quamy trucks would not be altered by the Proposal.

At the maximum permitted despatch rate of 1.1 Mtpa , the transportation of quary products would generate an average of 250 trips perday and a peak of 360 trips per day on weekdays. On Saturdays, the transport of qua my products would generate an average of 148 trips per day and a peak of 210 trips perday. With the Proposal, this rate of trip generation may continue beyond 2020. The peak day conditions represent the expected busiest days during which customers are predominantly located in the Sydney metropolitan area, i.e. largertrucks are used fortransporting qua my products and the majority of trips are to and from the east along the Great Westem Highway. The implications of peak day activity with local road works customers are discussed in Section 5.8.

With regard to light vehicle trip generation, the Proposal would not result in any further increase in the number of workers on the site or contractortrips above that described in Section 4.3 which would occur up to 2020 with transportation of up to 1.1 Mtpa of products. The number of employee and contractor trips beyond 2020 with the Proposal is therefore expected to be as follows:

- 20 workers a miving and departing at start and end of shift $=40$ vehic le trips perday
- 12 visitors or contrac tors a riving and departing $=24$ vehicle trips per weekday
- 5 visitors or contrac tors a miving and departing $=10$ vehicle trips per Saturday.

Table 5.1 summarises the expected volumes of traffic associated with the Austen Qua my over the peak weekday and Saturday and during the peak hours previously identified with the Proposal beyond 2020.

Table 5.1: Peak Day Austen Quarry Traffic 2020 to 2050 (vehicles/ hour)

	Quamy Access Road			J enolan Caves Road North of Quary Access Road			Jenolan Caves Road South of Quary Access Road		
	Light	Heavy	Total	Light	Heavy	Total	Light	Heavy	Total
Weekday									
5.00 to 6.00	8	31	39	6	31	37	1	0	1
10.00 to 11.00	1	38	39	1	38	39	0	0	0
11.00 to 12.00	2	27	29	2	27	29	0	0	0
16.00 to 17.00	4	24	28	3	24	27	1	0	1
17.00 to 18.00	10	20	29	8	20	28	2	0	2
Weekday Total ${ }^{\text {A }}$	64	370	434	52	370	422	12	0	12
Saturday									
5.00 to 6.00	10	33	43	8	33	41	2	0	2
11.00 to 12.00	7	35	42	6	35	41	1	0	1
12.00 to 13.00	5	17	22	4	17	21	1	0	1
14.00 to 15.00	1	1	2	1	1	2	0	0	0
Saturday Total ${ }^{\text {A }}$	50	210	260	41	210	251	9	0	9

Austen Quamy operating at 1.1 Mtpa , peak expected to occur approximately 5 timesperyear

These results assume that the spread of traffic through the day would remain the same as existing, with peaks oc curing at the same times a sexisting (Table 3.10). In reality, inc reases may occ ur by spreading the additional heavy vehic le trips over the times which are currently generating fewer trips, due to limitations on the number of trucks which may be loaded at any one time.

The general maximum of 20 truck loads of quary products able to be despatched in any one hour, generating 40 truck trips per hour would not be exceeded during the peak hours.

5.2 Future Traffic Volumes Beyo nd 2020

Table 5.2 presents the forecast two way traffic volumes in 2035 with the Proposal, i.e. with continued operation of the Austen Quarry beyond 2020. These results a ssume that the current weekday use of the Quamy Access Road by vehic les travelling to and from the adjacent land would continue with continued operation of the Austen Quary.

Table 5.2: Future Peak Day Two Way Traffic 2035 (vehicles/ hour)

	Quamy Access Road			Jenolan Caves Road North of Quany Access Road			Jenolan Caves Road South of Quary Access Road		
	Light	Heavy	Total	Light	Heavy	Total	Light	Heavy	Total
Weekday									
5.00 to 6.00	12	31	43	23	43	66	20	10	30
10.00 to 11.00	2	38	39	79	62	140	83	32	115
11.00 to 12.00	4	27	31	83	55	138	76	25	102
16.00 to 17.00	6	24	30	107	38	144	103	17	120
17.00 to 18.00	15	20	35	90	25	116	82	9	90
Weekday Total ${ }^{\text {A }}$	98	370	468	1,165	639	1,804	1,072	286	1,357

Saturday

5.00 to 6.00	10	33	43	17	39	57	11	9	20
11.00 to 12.00	7	35	42	152	59	211	171	12	183
12.00 to 13.00	5	17	22	133	22	155	138	9	147
14.00 to 15.00	1	1	2	154	9	163	148	7	156
Saturday Tota ${ }^{\text {B }}$	50	210	260	1,697	309	2,007	1,701	122	1,823

Peak day with the Austen Quamy operating at 1.1 Mtpa, peak expected to occur approximately 5 times per year
This demonstrates that with the combined effects of background growth in traffic and the increase in heavy vehicle movements assoc iated with the Proposal peak day activity, the weekday and Saturday peak hourly volumes on J enolan Caves Road would rema in below 150 and 220 vehic les per hour in 2035 respectively. Daily volumes to the north of the Quary would be approximately 1,800 and 2,000 vehic les perday on weekdays and Saturdays respectively in 2035.

5.3 Roadway Capacity and Effic iency Beyond 2020

The implications of the ongoing operation of the Austen Quarm beyond 2020 have been assessed with regard to the expected PTSF on J enolan Caves Road on a peak operating day in 2035. Table 5.3 summarises the results.

Table 5.3: Future Peak Day Midblock Levels of Senvice 2035

Location	AM Peak Hour				PM Peak Hour			
	Hour Start	$\mathrm{pc} / \mathrm{hr}$	PISF	LOS	Hour Start	$\mathrm{pc} / \mathrm{hr}$	PTSF	LOS
Weekday								
Jenolan CavesRoad South of Quamy Access Road	10:00	141	40.6	B	16:00	133	38.0	A
Jenolan CavesRoad North of Quarm Access Road	11:00	182	41.8	B	16:00	175	41.1	B
Saturday								
Jenolan CavesRoad South of Quarm Access Road	9:00	159	41.5	B	14:00	161	40.8	B
Jenolan CavesRoad North of Quarm Access Road	10:00	237	52.0	B	14:00	160	40.6	B

Austen Quamy operating at 1.1 Mtpa, peak expected to occur approximately 5 times peryear
The results demonstrate that the combined effects of the additional traffic associated with background growth and continued operations at the Quary on a peak day in 2035 would not result in any change to the worst Level of Service experienced on J enolan CavesRoad. The PTSF would remain below 55 percent, which is the upper threshold of for LoS B for Class Il roads (refer to Table 3.12), thus the assessment shows that the forecast changes in PTSF would not result in any signific ant change in the service level experienced by drivers.

It is noted that the Glenroy Bridge on J enolan Caves Road lies between the Austen Quary and the Great Westem Highway. The approaches (north and south of the bridge) were re-profiled in early 2012 to remove general depressions. This was conducted as an agreed arrangement with Lithgow City Council and RMS. It is acknowledged that J enolan CavesRoad is a State controlled road, and any further potential work on the Glenroy Bridge would need to be sponsored by RMS.

5.4 Impacts on Intersection Operation Beyond 2020

The operating characteristic s of the surveyed intersections have been reassessed using SIDRA a ssuming continued peak day operation of the Austen Quarry. The results are summarised in Table $\mathbf{5 . 4}$ and the results by movement are presented in Appendix C. The SIDRA assessment does not take into account any upgrades which may occur to the layout of the intersection.

Table 5.4: Peak Day Intersection Operating Conditions 2035

Intersection	X-value		Average Delay (sec/ veh)		Level of Service	

The results demonstrate that in 2035 , assuming no upgrade of the intersection is done, the delays experienced by drivers tuming right from J enolan Caves Road to the Great Westem Highway during the moming peak hour would increase to unacceptable levels with the combined influences of background growth and peak day ac tivity at the Austen Quamy.

The actual increase in the number of vehic lestuming right during the moming peak hour above the number surveyed in 2013 is modest, at 10 additional vehic les per hour, of which four vehic les wo uld relate to peak day activity at the Austen Quary and six would relate to background growth not associated with the Quary. However the slower tuming characteristics of heavy vehic les result in a requirement for longer gaps in the opposing traffic, thusthe relatively small increase in the number of tuming vehicleshas a
signific ant impact on the delays experienced by those drivers. The drivers on the Great Westem Highway would continue to experience only short average delays per vehicle.

Interpolation of the 2013 and 2035 results suggests that the Great Westem Highway/J enolan Caves Road intersection may go overcapacity in a round 2024. However, this results from the traffic growth along the ma in road asopposed to the Quary traffic.

As stated earlier, these results do not reflect any upgrade which may occur to the intersection of Jenolan Caves Road and the Great Westem Highway. As disc ussed (Section 4.1), upgrading of the intersection is planned by RMS, however details of the layout ortiming are not yet known.

5.5 Impacts on Great Westem Highway Beyond 2020

Based on the previousindicative forec asts of background traffic volumes on the Great Westem Highway without truc ks tra velling to and from the Austen Qua my (Table 4.9), the future traffic volumes on the Great Westem Highway with the Proposal is summa rised in Table 5.5, which considers only the truck trips associated with the transportation of quamy products, as this is the major component of traffic generated by the Quary. Vehicle tripsassociated with the movement of employees and contractors are assumed to be included in the background forecasts presented by RMS (Table 4.2) and no adjustments have been made for changes in those vehicle tripsover time. Due to the distancesinvolved with travel along the Great Westem Highway, these forecasts assume that the trips associated with the transportation of qua my products are spread evenly a cross the operating hours of the Austen Quarm. The quarm product trucks travelling laden to the east are assumed to travel to the Sydney metropolitan area, i.e. through the Blue Mountains via the Great Westem Highway.

Table 5.5: Indic ative Peak Day Traffic Volumes on the Great Westem Highway 2035

Location	AM Peak (vehicles/ hour)	PM Peak (vehicles/ hour)	Daily (vehicles/day)
Forty Bends	710	980	11,810
Hartley	800	1,110	13,384
Little Hartley	950	1,310	15,784
Victoria Pass	1,270	1,750	21,184
Blackheath	2,450	2,450	24,594
Medlow Bath	2,720	2,720	27,254
Leura	3,890	3,890	38,994
Wentworth Fa lls East	3,310	3,310	41,374
Bullabura (Stn 99.043)	3,240	3,240	32,494
Bullabura	3,660	3,660	36,634
La wson	3,090	3,070	38,934
Woodford-Hazelbrook	3,980	3,090	38,734
Faulconbridge	3,980	39,904	

Austen Quamy operating at 1.1 Mtpa , peak day expected to occurapproximately 5 times per year.
Should the Proposal be approved, the traffic volumes beyond 2020 would be comparable with those prior to 2020 , with a maximum of 342 heavy vehic les per day and an average of 20 heavy vehicles per hour on a peak operating day tra velling to and from the Austen Quamy on the Great Westem Highway east of Jenolan Caves Road i.e., through the Blue Mountains. The peakday is expected to occur on approximately five oc casions each year.

The Proposal itself would thus not have a signific ant impact on the traffic volumes on the Great Westem Highway, noting that the Proposal would not alter the maximum permitted despatch of product from that currently permitted. The changes in traffic resulting from the continued operationsat the Austen Quary would not signific antly alter the overall traffic demand on the Great Westem Highway, noting the completed and planned upgrades on the Great Westem Highway will increase its overall capacity.

As at present, it is expected that Hy-Tec would continue to manage the despatch of trucksfrom the Quamy so as to minimise to the extent possible, the impacts of truck traffic on commuter peak hour traffic and school zone periods.

Assuming that the aforementioned general forec asts of total traffic on the Great Westem Highway included an a verage of 12 percent heavy vehicles on the Great Westem Highway, the contribution of the Quary to heavy vehic les on the Great Westem Highway on a peak day in 2035 is summarised in Table 5.6.

Table 5.6: Indic ative Peak Day Heavy Vehicle Traffic on the Great Westem Highway 2035

Location	Peak Hour (heavy vehicles/hour)		Daily (heavy vehicles/day)	
	Total	Quary	Total	Quary
Forty Bends	118	1	1,408	18
Hartley	142	20	1,426	342
Little Hartley	166	20	1,714	342
Victoria Pass	219	20	2,362	342
Blackheath	303	20	3,113	342
Medlow Bath	335	20	3,432	342
Leura	476	20	4,841	342
Wentworth Falls East	406	20	5,127	342
Bullaburra (Stn 99.043)	398	20	4,061	342
Bullaburra	448	20	4,558	342
Lawson	377	20	4,834	342
Woodford-Hazelbrook	380	20	4,810	342
Faulconbridge	486	20	4,950	342

Austen Quary operating at 1.1Mtpa, peak day expected to occurapproximately 5 times peryear.
Assumes background weekday traffic is 12 percent heavy vehicles
These results demonstrate that the contribution of the Austen Quary to total heavy vehic les on the Great Westem Highway on peak days would decrease through the Blue Mounta insto the east. The overall proportion of heavy vehic les on the Great Westem Highway would remain at a similar level to the existing situation, at between approximately 12 and 13 percent heavy vehic les on the peak days of activity at the Austen Quary, expected approximately five times peryear.

Based on the Austroads(2013) guide and the forecast peak hourly volumes, indic ative Levels of Service a long the Great Westem Highway are presented in Table 5.7.

Table 5.7: Indicative Future Peak Day Levels of Service on the Great Westem Highway 2035

Location	Total Vehicles per Hour	Number of Lanes	Speed Limit	Level of Service
Forty Bends	980	3	80	A
Hartley	1,110	3	90	A
Little Hartley	1,310	3	90	A
Victoria Pass	1,750	3	60	B
Leura	3,890	4	80	C
Wentworth Falls East	3,310	4	80	B
Bullabura	3,660	4	80	B
Lawson	3,070	4	80	B
Woodford-Hazelbrook	3,090	4	70	B
Faulconbridge				

Austen Quary operating at 1.1Mtpa, peak day expected to occurapproximately 5 times peryear. Levels of Service from Table 4.4 of Austroads (2013)

The results demonstrate that with continued operation at the Austen Quary, peak day ac tivity at the Quary would result in levels of service C on the Great Westem Highway in 2035. Level of Service C reflects an acceptable level of comfort and convenience within the zone of stable traffic flow, with drivers
restric ted to some extent in their freedom to select theirdesired speed and manoeuvre within the traffic stream.

5.6 Impacts on Pedestria ns, Cyc lists a nd Buses

The Proposal is not expected to generate any additional demand for pedestrian activity or bus patronage in the immediate area. The number of pedestrians walking along or acrossJenolan Caves Road in the vicinity of the Quarry would remain negligible, thus no additional specific facilities are warranted.

The Proposal is not expected to generate any additional demand for cyclist activity in the immediate area. The number of truckspermitted to be despatched from the Quary would not increase with the Proposal, thus it would not result in a ny inc rease in exposure between cyclists and vehic les on Great Westem Highway and the surrounding road network. The Proposal would therefore not warrant any additional cyclist facilities noting that the completed and planned upgrade works on Great Westem Highway will result in improved conditions for cyclists, irespective of the Austen Qua my operations.

The number of truck trips generated by the Austen Quarry on a peak day, once spread over the operating hours of the Qua my and taking into account Hy-Tec's management of despatch times (Section 3.11), would have a negligible effect on the delays experienced by pedestrianscrossing the Great Westem Highway through the villages of the Blue Mountains. Hy-Tec'smanagement of despatch times would also minimise the potential interaction between quamy traffic and school buses.

5.7 Impacts on Road Safety

The Proposal would result in the continuance of truck movements along the Great Westem Highway, prima rily through the Blue Mountains to and from the east of J enolan CavesRoad. This is the most appropriate route for such vehicles, being the major arterial route and ca mying freight between Sydney and westem NSW. The ongoing upgrading program for the Great Westem Highway is progressively improving the route to meet the current a nd future road transport demands along it, with the various upgrades aiming to improve traffic flow and reduce the risk of crashes. The design of all the road works take into consideration the specific needs of heavy vehicles, such as their slower acceleration and braking capabilities.

Hy-Tec's Road Truck Traffic Management Plan aims to maximise the safety of road users both inside the Quamy and on public roads, and continued compliance with that Plan will reduce the risk of incidents associated with the quamy trucks.

5.8 Peak Local Customer Activity Beyond 2020

As disc ussed (Sections 2.2 and 4.11), with a high proportion of products being delivered to roadworks between Mt Victoria and Lithgow as well asto Sydney, the traffic generation of the Quamy is estimated to increase to a peak of 250 loadsperday, generating 500 truck trips per day. This highertrip generation would only occur on one ortwo days peryear, and so is not considered a rea sonable basis for assessment of the typical implic ations of the proposal, however its implic ations are broadly reviewed below for the period beyond 2020.

The peak local day activity on a weekday would generate an additional 140 truck trips per day on Jenolan Caves Road above that assessed. The resulting Levels of Service experienced along Jenolan Caves Road east of Austen Quamy on a weekday with peak local customer ac tivity a re summarised in
Table 5.8 for year 2035.

Table 5.8: J enolan Caves Road East of Austen Quary PISF and LOS- Peak Local Customers 2035

	Hour Start	pc/hr	PISF	LOS
Weekday AM Peak	$11: 00$	201	43.6	B
Weekday PM Peak	$16: 00$	192	42.7	B

Austen Quarry operating at 1.1 Mtpa with local customers, peak expected to occurapproximately 1 to 2 times peryear
The results demonstrate that drivers on J enolan Caves Road would continue to experience good levels of service on the very busiest one ortwo days per year expected at the Austen Quamy in 2035.

To review the implications of the potential variation in distribution, the operation of the intersection of the Great Westem Highway and J enolan CavesRoad hasbeen reassessed assuming the higher number of truck trips per day and that the majority of those trips are made to and from the west. The results of the a nalysis are summarised in Table 5.9, which does not take into account any possible upgrading of the intersection.

Table 5.9: Jenolan Caves Road/Great Westem Highway Operation - Peak Local Customers 2035

	X-value	Average Delay (sec/veh)	Level of Service
Weekday AM Peak	0.27	48.3	D
Weekday PM Peak	0.38	42.3	C

Austen Quamy operating at 1.1 Mtpa with local customers, peak expected to occurapproximately 1 to 2 times peryear
The results demonstrate that the intersection would operate satisfactorily on the busiest one or two days peryear with local customers in 2035. Despite the higher number of trucks travelling to and from the Quamy, the change in the distribution of those truck trips would take advantage of available capacity at the intersection.

6. Mitigation Measures

The assessment in Section 5 demonstrates that the levels of service experienced along J enolan Caves Road are expected to remain good in the long term with the combined effects of background growth and peak day activity at the Austen Quary. Heavy vehic les do not appear to contribute to the history of crashes along the route. No additional measures are therefore considered to be warranted along Jenolan CavesRoad to accommodate the Proposal.

The a nalysis of the operating conditions at the intersection of J enolan Caves Road and the Great Westem Highway demonstrates that on a peak day in the long term (i.e. 2035), unacceptable delays may result, partic ularly during the moming peak as a result of increases in heavy vehic lestuming right from Jenolan Caves Road into the Great Westem Highway. As noted, upgrading of this intersection may inc rease the capacity for these movements, hence the delays forecast by SIDRA may not result. As the details of the upgrade are not known, it is recommended that in the longer term, the operation of the intersection should be monitored with particular regard to the delays and safety of vehic les exiting J enolan Caves Road to the Great Westem Highway, and to what extent the Austen Quamy contributes to the demand for this movement. If unacceptable delays are experienced during peak hours, and it is supported by monitoring data that the vehic les from the Austen Quary are signific antly contributing to the delays when considered in the context of other heavy vehic le traffic on J enolan Caves Road, consideration may then be given to placing a limit on the number of heavy vehic les exiting the Austen Quary during any one hour, orduring specific hours of the day. Such a limit should apply to the truck and dog combinations and B-Doubles, rather than smaller capacity rigid trucks as these have the greatest impact on delays at the intersection due to their need forlongergapsin opposing traffic. A further option is for the Quary to seek approval for a greater spread of transport hours, noting that J enolan CavesRoad is a gazetted B Double route for 24 hours per day, seven days perweek.

This is potentially a concem only in the longerterm (i.e. 2035) which is beyond the typical 10 yearpost opening assessment usually required by RMS, and beyond the 2020 horizon before which the Proposal would not alter traffic conditions from those already approved. It is therefore considered appropriate that a monitoring program be instated after 2020, with monitoring occuming possibly once every two years. The timing and method of the monitoring would clearly need to take into account the planned upgrade of the intersection of the Great Westem Highway with J enolan CavesRoad (once known), as this would alter the operating characteristic s of the intersection.

The Hy-Tec driver and vehicle check system standard, Hy-Tec Chain of Responsibility - Driver/Vehicle Checks, should continue to a pply to all people involved in the various activitiesconsigning; loading; driving; operating a business which controls the use of a commercial vehicle and receiving goods or freight.

The establishment and maintenance of this system has been demonstrated to reduce the number of truck drivers who do not comply with fatigue laws, reducing the risk of inc idents on the transport route. The continuance of this system, together with the Road Truck Traffic Management Plan (Section 2.2), is therefore commended as a means to mitigate potential impacts of the proposal, particularly with regard to heavy vehic le driver behaviour.

7. Summary and Conclusions

7.1 Summary

- Austen Quary is located 3.5 km south-southwest of Hartley village and is accessed from the Quary Access Road off J enolan CavesRoad.
- Austen Quarry has approval to despatch up to 1.1 Mtpa of product until March 2020. It currently operates below this capacity, despatching in the region of 750,000 tpa.
- The Austen Quarry generates heavy vehicle trips associated with product despatch (and retum of unladen vehic les), light vehicle trips as a result of the workforce a miving at and departing from the Quamy, and other light and heavy trips associated with deliveries, visitors and contractors.
- Analysis of traffic surveys conducted during March 2013, indic ates that the levels of service experienced along Jenolan Caves Road during peak hours are good. The intersection of J enolan CavesRoad and the Great Westem Highway operates satisfac torily.
- A review of the history of crashes on J enolan Caves Road indic ates that speed of vehic les on bends to the north of the Austen Quary has resulted in drivers losing control of their vehicle. Heavy vehicles do not appear to be a contributing factor to road crashes.
- Assessment of the road transport implic ations of continuation of the Austen Quary without the Proposal but operating at its maximum approved rate of 1.1 Mtpa until 2020, indic ates that levels of service along Jenolan Caves Road would continue to be good, while delays to tuming vehic les at the intersection of J enolan CavesRoad and the Great Westem Highway would increase but remain within acceptable levels of service.
- Hy-Tec proposesto mainta in the existing maximum level of product despatch at 1.1 Mtpa with an extension of the life of the Quary through to 2050. The Proposal would result in a small inc rease in the workforce, with inc reases in the number of contractors would also be likely.
- Assessment of the road transport implic ations of the Proposal indic ates that levels of service along Jenolan CavesRoad would continue to be good, while delaysto tuming vehicles at the intersection of J enolan Caves Road and the Great Westem Highway would inc rease to una c ceptable levels after 2020, noting that details of the planned upgrade of the intersection are not yet known.
- It is recommended that the operation of the intersection of Jenolan Caves Road and the Great Westem Highway be monitored after 2020, to determine if a limit on the number of trucks despatched from the Austen Quary during any one hour or specific hours should be implemented or transport hours extended to allow opportunity to reduce movements during peak times.

7.2 Conclusions

This study hasfound that the Austen Quary Proposal would be accommodated on the surrounding road network with typic ally acceptable impactson the capacity, efficiency and safety of the road network. In the longerterm, unac ceptable delays may occurfor heavy vehiclestuming at the intersection of the Great Westem Highway and J enolan CavesRoad, depending on the future expected upgrading of the intersection. It is recommended that this be monitored after 2020 to determine if a limit on the number of articulated vehicle departures from the Austen Quamy is appropriate to maintain acceptable delays at the intersection.

8. References

Austroads (2006) Guide to Road Design Part 2: Design Considerations.
Austroads (2013) Guide to Traffic Management Part 3: Traffic Studies and Analysis.
Evans and Peck (2012) Review of Great Westem Highway Upgrades West of Katoomba - Independent Review.

GHD (2002) Upgrade of the Great Westem Highway - Woodford to Hazelbrook Review of Environmental Factors Volume 1 - Main Report.

GHD (2006) The Great Westem Highway Upgrade Wentworth Falls East Review of Environmental Factors Volume 1 - Main Report.

Mount Victoria to Lithgow Alliance (2012a) Mount Victoria to Lithgow Great Westem Highway Upgrade Hartley Valley safety upgrade Feasibility Report.

Mount Victoria to Lithgow Alliance (2012b) Great Westem Highway Upgrade, Forty Bends Upgrade Review of Environmental Factors, Technic al Paper 8: Traffic and Transport.

Mount Victoria to Lithgow Alliance (2012c) Great Westem Highway Upgrade, Concept Design - Concept Report.

Mount Victoria to Lithgow Alliance (2013) Katoomba to Lithgow Great Westem Highway Upgrade Hartley Valley safety upgrade Community feedback report.

Mount Victoria to Lithgow Alliance (2011) Great Westem Highway Upgrade, Mount Victoria to Lithgow Implementation Strategy.

Roadsand Traffic Authority (2002) Guide to Traffic Generating Developments.
Roads and Traffic Authority (2006) Great Westem Highway Upgrade Lawson Section 1A Traffic, Transport and Accessibility Report.

Roads and Maritime Services website accessed Oc tober 2014 http://www.ms.nsw.gov.au/projects/key-build-program/great-westem-highway/access.html.

Sincla ir Knight Merz (2013) Hartley Valley Safety Upgrade Review of Environmental Factors. (Volume 1 AppendixA).

SMEC Australia Pty Ltd (2014) Great Westem Highway - Ka toomba to Mount Victoria Road Safety Upgrades Potential Treatments Report.

Transport \& Urban Planning (2009) Traffic Study of Proposed Widening of Great Westem Highway, Bullabura.

Transportation Research Board (2010) Highway Capacity Manual.

AppendixA

Traffic Survey Results

Road	3 Jenolan Caves Road					Average Weekday														
Location	East of Quarry Access Road					7 Day Average		1249												
Site No.	1					Weekday Heavy		30.5\%												
Start Date	Thursday	21-Mar-13				7 Day Heavy		23.3\%												
Direction	Combined																			
Time	Day of Week							Ave W'day	7 Day Ave											
	Mon	Tue	Wed	Thu	Fri	Sat	Sun													
	25-Mar	26-Mar	27-Mar	21-Mar	22-Mar	23-Mar	24-Mar													
AM Peak	105	102	91	102	100	136	151													
PM Peak		95	107	110	107	113	164													
- _ 0:00 _																				
4:00	- - $\frac{7}{18}---\frac{3}{15}-$		23	22	21	7	2	20	15											
5:00	- - 42		38	40	41	30	5	42	35											
6:00	- - -4		50	57	46	48	14	55	48											
-7:00			81	61		6	30	71	64											
8:00	--85		69	85	88	68	$5 \overline{6}$	80	75											
9:00	-- - 77		74	88	70	90	92	78	82											
10:00	- - 9 - - - - - 8 -		87-	81	100	135	151	89	105											
11:00	- - 10		91	102		136	114	98	106											
12:00	- 73		54	110	89	103	108	80	87											
- 13:00	- - - 80		$7 \overline{6}$	78	93	90	122	79	87											
- 14:00	-- - 89		$9{ }^{9} 6$	80	107		164	92	106											
15:00			107	67		107		88	100											
16:00			88	95	104															
- 1700	--8̄-- $-7 \overline{2}$		79	79	87	94	100	81	85											
- 18:00	- - $\overline{41}-\mathrm{-}-\mathrm{-}$ - 6			46		77			58											
19:00			43	43					42											
-20:00			18	19																
- 21:00	$--15-$			11			11	15	15											
- 22.00	$-\frac{1}{7}$							$\overline{9}$	8											
23:00	$\left.\right\|^{--\frac{9}{7}}{ }^{-}$	4	7	7	7	$\overline{1} 3$	2	6	7											
Total		1201	1165	1186	1301	1332	1389	1204	1249											
\% Heavies	31.9\%	29.2\%	31.6\%	33.6\%	26.6\%	11.2\%	3.5\%	30.5\%	23.3\%											

Road	1 Jenolan Caves Rd					Average Weekday			
Location	Betw een Mckanes Falls Rd and Quarry Access Rd					7 Day Averag		1218	
Site No.	1					Weekday Heavy		19.7\%	
Start Date	Friday $\quad 8$-Mar-13							13.2\%	
Direction	Combined					7 Day Heavy			
Time	Day of Week							Ave W'day	7 Day Ave
	Mon	Tue	Wed	Thu	Fri	Sat	Sun		
	11-Mar	12-Mar	13-Mar	14-Mar	8-Mar	9-Mar	10-Mar		
AM Peak	95	86	72	81	98	154	175		
PM Peak	132	73	65	95	116	191	172		
0:00	3	2	0	3	5	8	5	3	4
1:00	1	3	6	3	2	2	4	3	3
- $2: 00$	4	6	5	3	1	3	1	4	3
3:00-	14	6		6	6				6
-4:00	6	10	14	-22	11	4	3	13	10
5:00	-27	20	13	15	9	$1 \overline{6}$	9	17	16
- $6: 000^{-}$	33^{-}	17	19	15	34	$\overline{4} 9$	22	24^{-}	$2 \overline{7}$
-7:00	70	32		40^{-}				45	50
-8:00	74	49	54	$4 \overline{6}$	60	146	78	57	72
9:00	71	51	60	66	59	154	142	61	86
- 10:00	95	86	72	81	98			86	104
11:00	86	74	57	67					95
12:00	81	$5 \overline{6}$	63	95		125	145	7 $\overline{6}$	93
-13:00	72	$6 \overline{5}$	$5 \overline{5}$	$6 \overline{3}$				71	96
- 1400	72	$\overline{7} 3$	65	70	87	191	168	73	104
15:00	86								
16:00	$\overline{1} 32$	60	59	$8 \overline{9}$		177	172	91	115
- 17000	67	$6 \overline{6}$	64	$4 \overline{3}$			122	65	81
- 18:00	50	46	34	42		79	81	49	58
19:00	14	31		22					
20:00	13	13	19	$1 \underline{6}$				$\underline{21}$	24
- $21: 00$	-	5		-				12	12
- $22: 00$	-- $-\frac{4}{4}$	6	11	9	21	17		10	11
23:00	6	12	6	6	11	16	3	$\overline{8}$	9
Total	1087	853	824	895	1233	1866	1766	978	1218
\% Heavies	18.2\%	21.2\%	21.0\%	26.4\%	14.3\%	5.7\%	3.2\%	19.7\%	13.2\%

HY-TEC INDUSTRIES PTY LIMITED
Austen Quarry - Stage 2 Extension Project Report No. 652/19

austraffic

5902 - Jenolan Caves Road Intersection Count - IC

May-13

JOB NUMBER	5902
Job Name	Jenolan Caves Road Intersection Count
CLIENT	GTA
SURVEY LOCATIONS	1. Jenolan Caves Road and Quarry Access Road
	2. Great Western Highway and Jenolan Caves Road
SURVEY TYPE	Intersection Count
SURVEY DATE	Wednesday, 29 May 2013
SURVEY PERIOD	07:30 AM - 10:00 AM
	04:00 PM - 06:30 PM
WEATHER	Fine

Survey Start	7:30 AM 16:00 PM
Intersection Type	T Junction
Intersection No.	1
North Approach	Jenolan Caves Road
East Approach	Quarry Access Road
South Approach	Jenolan Caves Road
West Approach	
Date	29/05/13
Classification	Light Heavy

Camera Position

TIME PERIOD	VEHICLE MOVEMENT										VEHICLE MOVEMENT					
	2		3		4			6			7		8		GRAND TOTAL	
	Light Heay ${ }^{\text {d }}$	Σ	Light ${ }_{\text {Heavy }}$	Σ	Light	Heay	Σ	Light	Heay	Σ	Light, Heay	Σ	Light ${ }^{\text {Heaw }}$,	Σ	Light ${ }^{\text {Heaw }}$ \|	Σ
7:30 - - ${ }^{8: 30}$	$17+^{13}+$		$2 \vdash^{4}+$			3	4	0	0	0	0 - 0	0	${ }^{11}+{ }^{5}$		$31 \vdash^{25}+$	
7:45 - - 8:45	$15+13$	28	2- ${ }^{-}$	7	$\frac{1}{2}$	3	5						$10+3$		$30-24$	
8:00 - - 9:00	11		2		1	4	5		0	0	1 - 0		$13+$		$\underline{28} \Vdash^{22}+$	
8:15 - - 9:15	$\underline{9}^{+}{ }^{-}$	18	${ }^{2}-\frac{4}{8}$		1	3		0	0	-	$2-{ }^{-}$		12	$\overline{15}$	${ }^{26}-19$	
8:30 - - 9:30	$1 \overline{1}+{ }^{4}$	20	$2-8$	10		4	6	0	0	0	$2-0$		$14+7$	21	$36 _^{23}$	
8:45 - - 9:45	$23-7$	30	4-6	10	2	6	8	0	0	0	1 - 0	1	$21+8$	29	$51-27$	
9:00 - 10:00	$22 \left\lvert\, \frac{1}{6}\right.$	28	$3-\frac{1}{6}$	9	2	6	8	0	0	0	$1-0$	1	$\underline{21}$	31	49 - 28	7

TIME PERIOD	VEHICLE MOVEMENT					VEHICLE MOVEMENT					
	2	3	4	6		7		8		GRAND TOTAL	
	Light Heay ${ }^{\text {L }} \mathrm{\Sigma}$		Light Heay ${ }^{\text {d }}$	Light Heavy	Σ	Light ${ }_{\text {Heav }}{ }^{\text {d }}$	Σ	Light ${ }^{\text {'Heay }}$ \|	Σ	Light 'Heay ${ }^{\prime}$	
16:00 - - - 17:00	$22+{ }^{2}-1{ }^{24}$	$3 \vdash^{1}+{ }^{4}$	$6 \square^{3}+^{9}$	0	0	$0-0$	0	${ }^{31}+5$	36	$62\left\llcorner^{11}+\right.$	
16:15 - 17:15	$21-3-24$	$3-14$	9 $+2-11$	$2 \perp 0$	2	1 - ${ }^{0}$	1	30	34	$66-10$	76
16:30-- 17:30	$23 \perp{ }^{2}-25$	$3 L^{\frac{1}{2}} \perp{ }^{5}$	$\underline{9}-1+1{ }^{10}$	3	3	0	2	26	30	66- L^{9}	
16:45 - - 17:45	$19-2-21$	1-1-2	$8 \times 1-9$	${ }^{3}$	3	-		$24-2$	26	57-6	
17:00 - $18: 00$	$15 \perp 2$	$0-\frac{1}{2} \perp 2$	8 - 1	3	3	$2-0$	2	$22 \perp 1$	23		
17:15-- ${ }^{18: 15}$	$11-0{ }^{11}$	$0-3{ }^{3}$	$\frac{3}{4}$ T-1 ${ }^{1}$	$1{ }^{1}$	1	1-\0	1	${ }^{21}+^{1}$	$\frac{22}{17}$	$37{ }^{5}$	
17:30 - - 18:30	10 T 1711	$0{ }_{0}{ }^{3}$	$4{ }^{4}$ T 6	0 - 0	0	0 - 0	0	17 T 0	17	$31{ }^{6}{ }^{6}$	

1-71

GTAconsultants

Intersection of Jenolan Caves Road and Quarry Access Road

Intersection of Jenolan Caves Road and Quarry Access Road

Jenolan Caves Road

peoy ssəoว૪ Kueno

Intersection of Jenolan Caves Road and Quarry Access Road

Jenolan Caves Road

Intersection of Jenolan Caves Road and Quarry Access Road

Jenolan Caves Road

Appendix B

Reported Crashes 2008-2012

The following graphic was provided by RMS, and it is noted that some individual crash locations are diffic ult to identify as they are overlaid by a crash at the same or similar location. Detailed information was provided for each crash, which references the ID numbers on this graphic.

1-87

Appendix C

SIDRA Results by Movement

Jenolan Caves Road and Quarry Access Road 8.45-9.45am

Surveyed 2013
Giveway / Yield (Two-Way)

Movement Performance - Vehicles										
Mov ID Turn	Demand Flow veh/h	$\begin{aligned} & \text { HV } \\ & \% \end{aligned}$	Deg Satn v/c	Average Delay sec	Level of Service	95\% Back Vehicles veh	Gueue Distance m	Prop. Queued	Effective Stop Rate per veh	Average Speed km/h
South: Quarry access road - S										
1 L	1	0.0	0.020	11.1	LOSA	0.1	0.8	0.27	0.58	49.1
3 R	8	75.0	0.020	14.9	LOS B	0.1	0.8	0.27	0.67	49.1
Approach	9	66.7	0.020	14.4	LOSA	0.1	0.8	0.27	0.66	49.1
East. Jenolan Caves Road - E										
4 L	11	60.0	0.008	12.7	LOSA	0.0	0.0	0.00	0.71	57.1
5 T	32	23.3	0.019	0.0	LOSA	0.0	0.0	0.00	0.00	80.0
Approach	42	32.5	0.019	3.2	NA	0.0	0.0	0.00	0.18	73.4
West: Jenolan Caves Road - W										
11 T	31	27.6	0.012	0.1	LOSA	0.0	0.3	0.05	0.00	78.1
12 R	1	0.0	0.012	10.3	LOSA	0.0	0.3	0.14	1.38	57.8
Approach	32	26.7	0.012	0.4	NA	0.0	0.3	0.05	0.05	77.3
All Vehicles	83	34.2	0.020	3.4	NA	0.1	0.8	0.05	0.18	70.8

Level of Service (LOS) Method: Delay (RTA NSW).
Vehicle movement LOS values are based on average delay per movement
Minor Road Approach LOS values are based on average delay for all vehicle movements.
NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.
SIDRA Standard Delay Model used.
Surveyed 2013
Giveway / Yield (Two-Way)

Movement Performance - Vehicles										
Mov ID Tum	Demand Flow veh/h	$\begin{array}{r} \text { HV } \\ \% \end{array}$	Deg. Satn v/c	Average Delay sec	Level of Service	95\% Back Vehicles veh	Queue Distance m	Prop. Queued	Effective Stop Rate per veh	Average Speed km / h
South: Quarry access road - S										
1 L	2	0.0	0.018	9.8	LOS A	0.1	0.5	0.18	0.60	50.3
3 R	12	18.2	0.018	10.7	LOS A	0.1	0.5	0.18	0.66	50.3
Approach	14	15.4	0.018	10.6	LOS A	0.1	0.5	0.18	0.65	50.3
East: Jenolan Caves Road - E										
4 L	4	25.0	0.003	11.2	LOS A	0.0	0.0	0.00	0.73	57.1
$5 \quad \mathrm{~T}$	25	12.5	0.014	0.0	LOS A	0.0	0.0	0.00	0.00	80.0
Approach	29	14.3	0.014	1.6	NA	0.0	0.0	0.00	0.10	76.1
West Jenolan Caves Road - W										
11 T	36	11.8	0.013	0.0	LOS A	0.0	0.3	0.04	0.00	78.5
12 R	1	0.0	0.013	10.2	LOS A	0.0	0.3	0.11	1.44	57.6
Approach	37	11.4	0.013	0.3	NA	0.0	0.3	0.04	0.04	77.8
All Vehicles	80	13.2	0.018	2.5	NA	0.1	0.5	0.05	0.17	70.7

Level of Service (LOS) Method: Delay (RTA NSW).
Vehicle movement LOS values are based on average delay per movement
Minor Road Approach LOS values are based on average delay for all vehicle movements.
NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.
SIDRA Standard Delay Model used.

Processed: Thursday. 23 January 2014 12:12:48 AM
SIDRA INTERSECTION 5.1.13.2093
Project CiUsers Penny Dalton
8000056, GTA CONSULTANTS, ENTERPRISE

MOVEMENT SUMMARY

Jenolan Caves Road and Quarry Access Road
8.45-9.45am

Future Peak Day Traffic (2020)
Giveway / Yield (Two-Way)

Movement Performance - Vehicles										
Mov ID Tum	Demand Flow veh/h	$\begin{aligned} & \text { HV } \\ & \% \end{aligned}$	Deg. Satn v/c	Average Delay sec	Level of Service	95\% Back Vehicles veh	Queue Distance m	Prop. Queued	Effective Stop Rate per veh	Average Speed kmh
South: Quarry access road - S										
1 L	1	0.0	0.042	12.1	LOS A	0.2	1.9	0.34	0.57	48.1
3 R	16	86.7	0.042	16.5	LOS B	0.2	1.9	0.34	0.69	48.1
Approach	17	81.2	0.042	16.2	LOS B	0.2	1.9	0.34	0.68	48.1
East: Jenolan Caves Road - E										
4 L	18	76.5	0.015	13.5	LOS A	0.0	0.0	0.00	0.71	57.1
5 T	36	23.5	0.021	0.0	LOS A	0.0	0.0	0.00	0.00	80.0
Approach	54	41.2	0.021	4.5	NA	0.0	0.0	0.00	0.24	71.3
West Jenolan Caves Road - W										
11 T	35	27.3	0.014	0.1	LOS A	0.0	0.3	0.06	0.00	77.7
12 R	1	0.0	0.014	10.4	LOS A	0.0	0.3	0.17	1.37	58.0
Approach	36	26.5	0.014	0.4	NA	0.0	0.3	0.06	0.04	77.0
All Vehicles	106	42.6	0.042	5.0	NA	0.2	1.9	0.07	0.24	67.8

Level of Service (LOS) Method: Delay (RTA NSW).
Vehicle movement LOS values are based on average delay per movement
Minor Road Approach LOS values are based on average delay for all vehicle movements.
NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.
SIDRA Standard Delay Model used.

Jenolan Caves Road and Quarry Access Road
4.15-5.15pm

Future Peak Day Traffic (2020)
Giveway / Yield (Two-Way)

Movement Performance - Vehicles										
Mov ID Turn	Demand Flow veh/h	$\begin{array}{r} \text { HV } \\ \% \end{array}$	Deg. Satn v/c	Average Delay sec	Level of Service	95\% Back Vehicles veh	Queue Distance \qquad	Prop. Queued	Effective Stop Rate per veh	Average Speed kmh
South: Quarry access road - S										
1 L	2	0.0	0.026	10.1	LOS A	0.1	0.8	0.21	0.60	50.1
3 R	16	26.7	0.028	11.4	LOS A	0.1	0.8	0.21	0.66	50.1
Approach	18	23.5	0.026	11.3	LOS A	0.1	0.8	0.21	0.65	50.1
East: Jenolan Caves Road - E										
4 L	5	40.0	0.004	11.8	LOS A	0.0	0.0	0.00	0.71	57.1
5 T	28	11.1	0.016	0.0	LOS A	0.0	0.0	0.00	0.00	80.0
Approach	34	15.6	0.016	1.8	NA	0.0	0.0	0.00	0.11	75.8
West Jenolan Caves Road - W										
11 T	41	12.8	0.015	0.0	LOS A	0.0	0.3	0.04	0.00	78.4
12 R	1	0.0	0.015	10.2	LOS A	0.0	0.3	0.12	1.46	57.7
Approach	42	12.5	0.015	0.3	NA	0.0	0.3	0.04	0.04	77.8
All Vehicles	94	15.7	0.026	2.9	NA	0.1	0.8	0.06	0.18	69.8

Level of Service (LOS) Method: Delay (RTA NSW).
Vehicle movement LOS values are based on average delay per movement
Minor Road Approach LOS values are based on average delay for all vehicle movements.
NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.
SIDRA Standard Delay Model used.

[^3]
MOVEMENT SUMMARY

Jenolan Caves Road and Quarry Access Road
8.45-9.45am

Future Traffic Quarry Closed (2035)
Giveway / Yield (Two-Way)

Movement Performance - Vehicles										
Mov ID Turn	Demand Flow veh/h	$\begin{gathered} \text { HV } \\ \% \end{gathered}$	Deg. Satn v/c	Average Delay sec	Level of Service	85\% Back Vehicles veh	Queue Distance m	Prop. Queued	Effective Stop Rate per veh	Average Speed km / h
South: Quarry access road - S										
1 L	1	0.0	0.002	9.7	LOS A	0.0	0.1	0.18	0.61	50.3
3 R	1	0.0	0.002	9.7	LOS A	0.0	0.1	0.18	0.65	50.4
Approach	2	0.0	0.002	9.7	LOS A	0.0	0.1	0.18	0.63	50.3
East: Jenolan Caves Road - E										
4 L	3	0.0	0.005	10.1	LOS A	0.0	0.0	0.00	1.07	57.1
5 T	45	23.3	0.024	0.0	LOS A	0.0	0.0	0.00	0.00	80.0
Approach	48	21.7	0.024	0.7	NA	0.0	0.0	0.00	0.07	78.2
West Jenolan Caves Road - W										
11 T	44	28.6	0.017	0.1	LOS A	0.0	0.4	0.05	0.00	78.0
12 R	1	0.0	0.017	10.3	LOS A	0.0	0.4	0.15	1.43	57.9
Approach	45	27.9	0.017	0.3	NA	0.0	0.4	0.05	0.03	77.5
All Vehicles	96	24.2	0.024	0.7	NA	0.0	0.4	0.03	0.06	76.8

Level of Service (LOS) Method: Delay (RTA NSW).
Vehicle movement LOS values are based on average delay per movement
Minor Road Approach LOS values are based on average delay for all vehicle movements.
NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.
SIDRA Standard Delay Model used.

Processed: Thursday. 23 January 2014 12:12:49 AM
Project C:UUsers)Penny Dalton.GTAOVDocumentsISIDRA1140123sid-13S9027000-Austen-Quarrysip

MOVEMENT SUMMARY

Jenolan Caves Road and Quarry Access Road
4.15-5.15pm

Future Traffic Quarry Closed (2035)
Giveway / Yield (Two-Way)

Movement Performance - Vehicles										
Mov ID Tum	Demand Flow veh/h	$\begin{gathered} \text { HV } \\ \% \end{gathered}$	Deg. Satn v/c	Average Delay sec	Level of Service	95\% Back Vehicles veh	Queue Distance m	Prop. Queued	Effective Stop Rate per veh	Average Speed km/h
South: Quarry access road -S 0.0										
1 L	1	0.0	0.009	9.8	LOS A	0.0	0.2	0.20	0.60	50.2
3 R	6	0.0	0.009	9.8	LOS A	0.0	0.2	0.20	0.65	50.3
Approach	7	0.0	0.009	9.8	LOS A	0.0	0.2	0.20	0.64	50.2
East: Jenolan Caves Road - E										
4 L	1	0.0	0.003	10.1	LOS A	0.0	0.0	0.00	1.33	57.1
5 T	36	11.8	0.017	0.0	LOSA	0.0	0.0	0.00	0.00	80.0
Approach	37	11.4	0.017	0.3	NA	0.0	0.0	0.00	0.04	79.2
West Jenolan Caves Road - W										
11 T	52	12.2	0.018	0.0	LOS A	0.1	0.4	0.04	0.00	78.3
12 R	1	0.0	0.018	10.2	LOS A	0.1	0.4	0.12	1.49	57.7
Approach	53	12.0	0.018	0.3	NA	0.1	0.4	0.05	0.03	77.8
All Vehicles	97	10.9	0.018	1.0	NA	0.1	0.4	0.04	0.08	75.2

Level of Service (LOS) Method: Delay (RTA NSW).
Vehicle movement LOS values are based on average delay per movement
Minor Road Approach LOS values are based on average delay for all vehicle movements.
NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.
SIDRA Standard Delay Model used.

Jenolan Caves Road and Quarry Access Road
8.45-9.45am

Future Peak Day Traffic (2035)
Giveway / Yield (Two-Way)

Movement Performance - Vehicles										
Mov ID Tum	Demand Flow veh/h	$\begin{array}{r} \text { HV } \\ \% \end{array}$	Deg. Satn v/c	Average Delay sec	Level of Service	95\% Back Vehicles veh	Queue Distance \qquad m	Prop. Queued	Effective Stop Rate per veh	Average Speed kmh
South: Quarry access road - S										
1 L	1	0.0	0.045	12.9	LOS A	0.2	2.0	0.38	0.57	47.3
3 R	16	86.7	0.045	17.3	LOS B	0.2	2.0	0.38	0.70	47.4
Approach	17	81.2	0.045	17.0	LOS B	0.2	2.0	0.38	0.69	47.4
East: Jenolan Caves Road - E										
4 L	19	72.2	0.015	13.3	LOS A	0.0	0.0	0.00	0.71	57.1
5 T	45	23.3	0.027	0.0	LOS A	0.0	0.0	0.00	0.00	80.0
Approach	64	37.7	0.027	3.9	NA	0.0	0.0	0.00	0.21	72.2
West Jenolan Caves Road - W										
11 T	44	28.6	0.017	0.1	LOS A	0.0	0.4	0.07	0.00	77.5
12 R	1	0.0	0.017	10.4	LOS A	0.0	0.4	0.19	1.39	58.1
Approach	45	27.9	0.017	0.3	NA	0.0	0.4	0.07	0.03	77.0
All Vehicles	126	40.0	0.045	4.4	NA	0.2	2.0	0.07	0.21	69.0

Level of Service (LOS) Method: Delay (RTA NSW).
Vehicle movement LOS values are based on average delay per movement
Minor Road Approach LOS values are based on average delay for all vehicle movements.
NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.
SIDRA Standard Delay Model used.

Jenolan Caves Road and Quarry Access Road
4.15-5.15pm

Future Peak Day Traffic (2035)
Giveway / Yield (Two-Way)

Movement Performance - Vehicles										
Mov ID Tum	Demand Flow veh/h	$\begin{array}{r} \text { HV } \\ \% \end{array}$	Deg. Satn v/c	Average Delay sec	Level of Service	95\% Back Vehicles veh	Queue Distance m	Prop. Queued	Effective Stop Rate per veh	Average Speed kmh
South: Quarry access road - S										
1 L	2	0.0	0.028	10.3	LOS A	0.1	0.9	0.24	0.59	49.9
3 R	17	25.0	0.028	11.5	LOS A	0.1	0.9	0.24	0.66	49.9
Approach	19	22.2	0.028	11.4	LOS A	0.1	0.9	0.24	0.65	49.8
East: Jenolan Caves Road - E										
4 L	5	40.0	0.004	11.8	LOS A	0.0	0.0	0.00	0.75	57.1
5 T	36	11.8	0.019	0.0	LOS A	0.0	0.0	0.00	0.00	80.0
Approach	41	15.4	0.018	1.5	NA	0.0	0.0	0.00	0.10	76.5
West Jenolan Caves Road - W										
11 T	52	12.2	0.018	0.1	LOS A	0.1	0.4	0.05	0.00	78.2
12 R	1	0.0	0.018	10.3	LOS A	0.1	0.4	0.13	1.47	57.8
Approach	53	12.0	0.018	0.3	NA	0.1	0.4	0.05	0.03	77.7
All Vehicles	113	15.0	0.028	2.6	NA	0.1	0.8	0.06	0.16	70.8

Level of Service (LOS) Method: Delay (RTA NSW).
Vehicle movement LOS values are based on average delay per movement
Minor Road Approach LOS values are based on average delay for all vehicle movements.
NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.
SIDRA Standard Delay Model used.

Great Western Highway and Jenolan Caves Road
7.30-8.30am

Surveyed 2013
Stop (Two-Way)

Level of Service (LOS) Method: Delay (RTA NSW).
Vehicle movement LOS values are based on average delay per movement
Minor Road Approach LOS values are based on average delay for all vehicle movements.
NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays assoclated with major road movements.
SIDRA Standard Delay Model used.

MOVEMENT SUMMARY

Great Western Highway and Jenolan Caves Road
$4.00-5.00 \mathrm{pm}$
Surveyed 2013
Stop (Two-Way)

Level of Service (LOS) Method: Delay (RTA NSW)
Vehicle movement LOS values are based on average delay per movement
Minor Road Approach LOS values are based on average delay for all vehicle movements.
NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays assoclated with major road movements.
SIDRA Standard Delay Model used.

Processed: Thursday, 23 January 2014 12:12:50 AM SIDRA INTERSECTION 5.1.13.2093 8000056, GTA CONSULTANTS, ENTERPRISE

SIDRA
INTERSECTION

Great Western Highway and Jenolan Caves Road
7.30-8.30am

Future Peak Day Traffic (2020)
Stop (Two-Way)

Movement Performance - Vehicles											
Mov ID		Demand Flow vehth	$\begin{array}{r} \text { HV } \\ \% \end{array}$	Deg. Satn wic	Average Delay sec	Level of Service	95\% Back Vehleles weh	Oueve Distance m	Prop. Queved	Effective Stop Rate Der veh	Average Speed kmh
South: Jenolan Caves Road - S											
1	L	2	0.0	0.238	44.1	LOS D	0.8	8.2	0.84	0.93	33.5
2	T	1	0.0	0.238	43.8	LOS D	0.8	8.2	0.84	1.03	31.2
3	R	26	52.0	0.238	49.6	LOS D	0.8	8.2	0.84	1.02	35.0
Approach		29	46.4	0.238	49.0	LOS D	0.8	8.2	0.84	1.01	34.8
East Great Western Highway - E											
4	L	40	47.4	0.046	14.2	LOSA	0.2	1.6	0.08	0.66	61.3
5	T	328	15.4	0.093	1.1	LOSA	0.0	0.0	0.00	0.07	84.3
6	R	1	0.0	0.001	12.3	Los A	0.0	0.0	0.35	0.64	58.2
Approach		369	18.8	0.093	2.5	NA	0.2	1.6	0.01	0.13	81.0
North: Blackmans Creek Road											
7	L	6	0.0	0.013	14.7	LOS B	0.0	0.3	0.44	0.82	48.4
8	T	1	0.0	0.013	15.3	LOS B	0.0	0.3	0.44	0.92	46.1
9	R	1	0.0	0.013	14.8	LOS B	0.0	0.3	0.44	0.93	46.5
Approach		8	0.0	0.013	14.8	LOS B	0.0	0.3	0.44	0.85	47.9
West: Great Western Highway - W											
10	L	1	0.0	0.001	11.2	LOSA	0.0	0.0	0.00	0.73	60.4
11	T	238	25.2	0.142	0.0	LOSA	0.0	0.0	0.00	0.00	90.0
12	R	7	85.7	0.018	22.7	LOS B	0.1	0.8	0.53	0.76	54.5
Approac		246	26.9	0.142	0.7	NA	0.1	0.8	0.02	0.03	88.3
All Vehic		654	22.9	0.238	4.1	NA	0.8	8.2	0.05	0.14	78.1

Level of Service (LOS) Method: Delay (RTA NSW).
Vehicle movement LOS values are based on average delay per movement
Minor Road Approach LOS values are based on average delay for all vehicle movements.
NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays assoclated with major road movements.
SIDRA Standard Delay Model used.

Processed: Thursday, 23 January 2014 12:12:50 AM
SIDRA INTERSECTION 5.1.13.2093 8000056 , GTA CONSULTANTS, ENTERPRISE

SIDRA
INTERSECTION

Great Westem Highway and Jenolan Caves Road
4.00-5.00pm

Future Peak Day Traffic (2020)
Stop (Two-Way)

Movement Performance - Vehicles											
Mov ID	Turn	$\begin{aligned} & \text { Demand } \\ & \text { Flow } \\ & \text { vehh } \end{aligned}$	$\begin{aligned} & \text { HV } \\ & \% \end{aligned}$	Deg. Satn wh	$\begin{aligned} & \text { Average } \\ & \text { Delay } \\ & \text { sec } \end{aligned}$	Level of Service	95\% Back Vehicles weh	Oueve Distance m	Prop. Queved	Effective Stop Rate per veh	Average Speed kmin
South: Jenolan Caves Road - 5 (
1	L	4	50.0	0.278	35.8	LOS C	1.1	8.9	0.78	1.00	40.5
2	T	1	0.0	0.278	31.3	LOS C	1.1	8.9	0.78	1.04	38.0
3	R	53	20.0	0.278	34.1	LOSC	1.1	8.9	0.78	1.03	42.0
Approac		58	21.8	0.278	34.2	LOS C	1.1	8.9	0.78	1.03	41.8
East Great Western Highway - E											
4	L	37	11.4	0.031	12.3	LOSA	0.1	0.8	0.03	0.68	61.6
5	T	275	16.5	0.078	1.1	LOSA	0.0	0.0	0.00	0.07	84.3
6	R	3	0.0	0.003	12.9	LOSA	0.0	0.1	0.42	0.67	57.7
Approac		315	15.7	0.078	2.5	NA	0.1	0.8	0.01	0.15	80.5
Nortn: Blackmans Creek Road											
7	L	1	0.0	0.008	18.5	LOS B	0.0	0.2	0.59	0.79	45.4
8	T	1	0.0	0.008	19.2	LOS B	0.0	0.2	0.59	0.89	43.3
9	R	1	0.0	0.008	18.6	LOS B	0.0	0.2	0.59	0.90	43.5
Approac		3	0.0	0.008	18.8	LOS B	0.0	0.2	0.59	0.86	44.1
West: Great Western Highway - W											
10	L	1	0.0	0.001	11.2	LOSA	0.0	0.0	0.00	0.73	60.4
11	T	377	10.6	0.207	0.0	LOSA	0.0	0.0	0.00	0.00	90.0
12	R	4	25.0	0.005	14.8	LOS B	0.0	0.2	0.40	0.67	59.6
Approac		382	10.7	0.207	0.2	NA	0.0	0.2	0.00	0.01	89.4
All Vehic		758	13.6	0.278	3.8	NA	1.1	8.9	0.07	0.15	78.8

Level of Service (LOS) Method: Delay (RTA NSW).
Vehicle movement LOS values are based on average delay per movement
Minor Road Approach LOS values are based on average delay for all vehicle movements.
NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays assoclated with major road movements.
SIDRA Standard Delay Model used.

Great Western Highway and Jenolan Caves Road
7.30-8.30am

Future Peak Day Local Traffic (2020)
Stop (Two-Way)

Movement Performance - Vehicles										
Mov ID Turn	$\begin{aligned} & \text { Demand } \\ & \text { Flow } \\ & \text { vehh } \end{aligned}$	$\begin{gathered} \text { HV } \\ \% \end{gathered}$	Deg. Satn wh	Average Delay sec	Level of Service	95\% Back Vehicles weh	or Queve Distance m	Prop. Queved	Effective Stop Rate per veh	Average Speed cmin
South: Jenolan Caves Road -S										
1 L	12	81.8	0.159	36.3	LOS C	0.5	5.4	0.73	1.00	41.8
2 T	1	0.0	0.159	29.1	LOS C	0.5	5.4	0.73	1.01	39.3
3 R	19	33.3	0.159	33.2	LOS C	0.5	5.4	0.73	1.00	43.4
Approach	32	50.0	0.159	34.2	LOS C	0.5	5.4	0.73	1.00	42.7
East Great Western Highway - E										
4 L	31	31.0	0.031	13.5	LOSA	0.1	1.0	0.13	0.65	60.9
5 T	328	15.4	0.093	1.1	LOSA	0.0	0.0	0.00	0.07	84.3
$6 \quad \mathrm{R}$	1	0.0	0.001	12.3	LOSA	0.0	0.0	0.35	0.64	58.2
Approach	360	16.7	0.093	2.2	NA	0.1	1.0	0.01	0.12	81.6
North: Blackmans Creek Road										
7 L	6	0.0	0.014	14.9	LOS B	0.0	0.3	0.44	0.82	48.2
8 T	1	0.0	0.014	15.5	LOS B	0.0	0.3	0.44	0.93	46.0
9 R	1	0.0	0.014	15.0	LOS B	0.0	0.3	0.44	0.94	46.3
Approach	8	0.0	0.014	15.0	LOS B	0.0	0.3	0.44	0.85	47.7
West: Great Western Highway - W										
10 L	1	0.0	0.001	11.2	LOSA	0.0	0.0	0.00	0.73	60.4
11 T	238	25.2	0.142	0.0	LOSA	0.0	0.0	0.00	0.00	90.0
12 R	20	94.7	0.053	24.2	LOS B	0.2	2.5	0.55	0.82	53.4
Approach	259	30.5	0.142	1.9	NA	0.2	2.5	0.04	0.07	85.7
All Vehicles	659	23.5	0.159	3.8	NA	0.5	5.4	0.06	0.15	79.0

Level of Service (LOS) Method: Delay (RTA NSW).
Vehicle movement LOS values are based on average delay per movement
Minor Road Approach LOS values are based on average delay for all vehicle movements.
NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays assoclated with major road movements.
SIDRA Standard Delay Model used.

Great Western Highway and Jenolan Caves Road
$4.00-5.00 \mathrm{pm}$
Future Peak Day Local Traffic (2020)
Stop (Two-Way)

Movement Performance - Vehicles											
Mov ID	Turn	Demand FIow vehh	$\begin{gathered} \text { HV } \\ \% \end{gathered}$	Deg. Satn wh	Average Delay sec	Level of Service	95\% Back Vehicles veh	of Queve Distance m	Prop. Queved	Effective Stop Rate per veh	Average speed kmh
South: Jenolan Caves Road - S											
1	L	14	84.6	0.215	32.0	LOS C	0.8	6.8	0.69	1.00	45.4
2	T	1	0.0	0.215	24.5	LOS B	0.8	6.8	0.69	1.02	42.8
3	R	45	7.0	0.215	26.1	LOS B	0.8	6.8	0.69	1.01	46.9
Approach		60	24.6	0.215	27.4	LOS B	0.8	6.8	0.69	1.01	46.5
East Great Western Highway - E											
4	L	35	6.1	0.028	12.0	Los A	0.1	0.7	0.05	0.67	61.5
5	T	275	16.5	0.078	1.1	LOSA	0.0	0.0	0.00	0.07	84.3
6	R	3	0.0	0.003	12.9	LOSA	0.0	0.1	0.42	0.67	57.7
Approach		313	15.2	0.078	2.4	NA	0.1	0.7	0.01	0.14	80.7
North: Blackmans Creek Road											
7	L	1	0.0	0.008	18.8	LOS B	0.0	0.2	0.60	0.78	45.3
8	T	1	0.0	0.008	19.4	LOS B	0.0	0.2	0.60	0.89	43.1
9	R	1	0.0	0.008	18.9	LOS B	0.0	0.2	0.60	0.91	43.4
Approac		3	0.0	0.008	19.0	LOS B	0.0	0.2	0.60	0.86	43.9
West: Great Western Highway - W											
10	L	1	0.0	0.001	11.2	LOSA	0.0	0.0	0.00	0.73	60.4
11	T	377	10.6	0.207	0.0	LOSA	0.0	0.0	0.00	0.00	90.0
12	R	7	57.1	0.012	18.2	LOS B	0.0	0.5	0.45	0.71	57.8
Approac		385	11.5	0.207	0.4	NA	0.0	0.5	0.01	0.02	89.0
All Vehlic		761	14.0	0.215	3.4	NA	0.8	6.8	0.07	0.15	79.8

Level of Service (LOS) Method: Delay (RTA NSW).
Vehicle movement LOS values are based on average delay per movement
Minor Road Approach LOS values are based on average delay for all vehicle movements.
NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays assoclated with major road movements.
SIDRA Standard Delay Model used.

Great Western Highway and Jenolan Caves Road
7.30-8.30am

Future Traffic Quarry Closed (2035)
Stop (Two-Way)

Movement Performance - Vehicles										
Mov ID Turn	$\begin{aligned} & \text { Demand } \\ & \text { Flow } \\ & \text { vehth } \end{aligned}$	$\begin{array}{r} \text { HV } \\ \% \\ \hline \end{array}$	Deg. Saty wic	Average Delay sec	Level of Service	95\% Back Vehicles veh	Queve Distance m	Prop. Queved	Effective Stop Rate per weh	Average Speed kmh
South: Jenolan Caves Road - 5 l										
1 L	3	0.0	0.215	43.9	LOS D	0.7	6.2	0.85	0.96	33.7
2 T	1	0.0	0.215	43.5	LOS D	0.7	6.2	0.85	1.02	31.4
3 R	22	33.3	0.215	47.6	LOSD	0.7	6.2	0.85	1.01	35.1
Approach	26	28.0	0.215	47.0	LOS D	0.7	6.2	0.85	1.01	34.8
East Great Western Highway - E										
4 L	38	33.3	0.039	13.5	LOSA	0.1	1.2	0.08	0.66	61.3
5 T	415	15.2	0.117	1.1	LOSA	0.0	0.0	0.00	0.07	84.3
$6 \quad \mathrm{R}$	1	0.0	0.001	12.7	LOSA	0.0	0.0	0.40	0.64	57.9
Approach	454	16.7	0.117	2.2	NA	0.1	1.2	0.01	0.12	81.7
North: Blackmans Creek Road										
7 L	7	0.0	0.017	15.9	LOS B	0.1	0.4	0.50	0.83	47.5
8 T	1	0.0	0.017	16.5	LOS B	0.1	0.4	0.50	0.96	45.3
9 R	1	0.0	0.017	15.9	LOS B	0.1	0.4	0.50	0.97	45.6
Approach	9	0.0	0.017	15.9	LOS B	0.1	0.4	0.50	0.86	47.1
West: Great Western Highway - W										
10 L	1	0.0	0.001	11.2	Los A	0.0	0.0	0.00	0.73	60.4
11 T	300	25.3	0.179	0.0	Los A	0.0	0.0	0.00	0.00	90.0
12 R	8	87.5	0.025	25.3	LOS B	0.1	1.1	0.59	0.82	51.6
Approach	309	26.9	0.179	0.7	NA	0.1	1.1	0.02	0.02	88.3
All Vehicles	799	20.8	0.215	3.2	NA	0.7	6.2	0.04	0.12	79.8

Level of Service (LOS) Method: Delay (RTA NSW).
Vehicle movement LOS values are based on average delay per movement
Minor RoadApproach LOS values are based on average delay for all vehicle movements.
NA: Intersection LOS and Major Road Approach LOS values are Not Appilcable for two-way sign control since the average delay is not a good LOS measure due to zero delays assoclated with major road movements.
SIDRA Standard Delay Model used.

```
Processed. Thursday, 23 January 2014 12:12:51 AM Copyright e 2000-2011 Akcellk and Assodates Pty Lto
SIDRA INTERSECTION 5.1.13.2093
Project: CiUsersiPenny Daiton.GTADIDocumentsiSIDRAI140123sid-1359027000-Austen-Quarry.sip

Great Western Highway / Jenolan Caves Road
4.00-5.00pm

Future Traffic Quarry Closed (2035)
Stop (Two-Way)


Level of Service (LOS) Method: Delay (RTA NSW).
Vehicle movement LOS values are based on average delay per movement
Minor Road Approach LOS values are based on average delay for all vehicle movements.
NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays assoclated with major road movements.
SIDRA Standard Delay Model used.

Great Western Highway and Jenolan Caves Road
7.30-8.30am

Future Peak Day Traffic (2035)
Stop (Two-Way)


Level of Service (LOS) Method: Delay (RTA NSW).
Vehicle movement LOS values are based on average delay per movement
Minor Road Approach LOS values are based on average delay for all vehicle movements.
NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays assoclated with major road movements.
SIDRA Standard Delay Model used.

Great Westem Highway and Jenolan Caves Road
\(4.00-5.00 \mathrm{pm}\)
Future Peak Day Traffic (2035)
Stop (Two-Way)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{12}{|l|}{Movement Performance - Vehicles} \\
\hline Mov ID & Turn & \[
\begin{aligned}
& \text { Demand } \\
& \text { Flow } \\
& \text { vehh }
\end{aligned}
\] & \[
\begin{aligned}
& \text { HV } \\
& \%
\end{aligned}
\] & Deg. Satin WC & Average Delay sec & Level of Service & 95\% Back Vehicles weh & \begin{tabular}{l}
Queve \\
Distance m
\end{tabular} & Prop. Queved & Effective Stop Rate per veh & Average Speed kmh \\
\hline \multicolumn{12}{|l|}{South: Jenolan Caves Road - S} \\
\hline 1 & L & 6 & 50.0 & 0.497 & 53.0 & LOS D & 2.1 & 17.1 & 0.89 & 1.11 & 31.6 \\
\hline 2 & T & 1 & 0.0 & 0.497 & 48.4 & LOS D & 2.1 & 17.1 & 0.89 & 1.09 & 29.4 \\
\hline 3 & R & 64 & 18.0 & 0.497 & 51.1 & LOSD & 2.1 & 17.1 & 0.89 & 1.08 & 33.0 \\
\hline Approach & & 72 & 20.6 & 0.497 & 51.2 & LOS D & 2.1 & 17.1 & 0.89 & 1.08 & 32.8 \\
\hline \multicolumn{12}{|l|}{East Great Western Highway - E} \\
\hline 4 & L & 45 & 11.6 & 0.038 & 12.3 & LOSA & 0.1 & 1.0 & 0.04 & 0.68 & 61.6 \\
\hline 5 & T & 347 & 16.7 & 0.099 & 1.1 & LOSA & 0.0 & 0.0 & 0.00 & 0.07 & 84.3 \\
\hline 6 & R & 4 & 0.0 & 0.005 & 13.5 & LOSA & 0.0 & 0.1 & 0.48 & 0.69 & 56.8 \\
\hline Approac & & 397 & 15.9 & 0.099 & 2.5 & NA & 0.1 & 1.0 & 0.01 & 0.14 & 80.6 \\
\hline \multicolumn{12}{|l|}{North: Blackmans Creek Road} \\
\hline 7 & L & 1 & 0.0 & 0.011 & 22.4 & LOS B & 0.0 & 0.3 & 0.70 & 0.80 & 42.8 \\
\hline 8 & T & 1 & 0.0 & 0.011 & 23.0 & LOS B & 0.0 & 0.3 & 0.70 & 0.92 & 40.7 \\
\hline 9 & R & 1 & 0.0 & 0.011 & 22.5 & LOS B & 0.0 & 0.3 & 0.70 & 0.95 & 40.9 \\
\hline Approach & & 3 & 0.0 & 0.011 & 22.6 & LOS B & 0.0 & 0.3 & 0.70 & 0.89 & 41.5 \\
\hline \multicolumn{12}{|l|}{West: Great Western Highway - W} \\
\hline 10 & L & 1 & 0.0 & 0.001 & 11.2 & LOSA & 0.0 & 0.0 & 0.00 & 0.73 & 60.4 \\
\hline 11 & T & 477 & 10.6 & 0.261 & 0.0 & LOSA & 0.0 & 0.0 & 0.00 & 0.00 & 90.0 \\
\hline 12 & R & 5 & 20.0 & 0.007 & 14.9 & LOS B & 0.0 & 0.2 & 0.45 & 0.69 & 59.0 \\
\hline Approac & & 483 & 10.7 & 0.261 & 0.2 & NA & 0.0 & 0.2 & 0.00 & 0.01 & 89.5 \\
\hline All Vehlic & & 955 & 13.6 & 0.497 & 5.0 & NA & 2.1 & 17.1 & 0.08 & 0.15 & 76.0 \\
\hline
\end{tabular}

Level of Service (LOS) Method: Delay (RTA NSW).
Vehicle movement LOS values are based on average delay per movement
Minor Road Approach LOS values are based on average delay for all vehicle movements.
NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control slnce the average delay is not a good LOS measure due to zero delays assoclated with major road movements.
SIDRA Standard Delay Model used.

Great Western Highway and Jenolan Caves Road
7.30-8.30am

Future Peak Day Local Traffic (2035)
Stop (Two-Way)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{12}{|l|}{Movement Performance - Vehicles} \\
\hline Mov ID & Turn & \[
\begin{aligned}
& \text { Demand } \\
& \text { Flow } \\
& \text { vehh }
\end{aligned}
\] & \[
\begin{gathered}
\text { HV } \\
\text { \% }
\end{gathered}
\] & Deg. Satn wic & \[
\begin{aligned}
& \text { Average } \\
& \text { Delay } \\
& \text { sec. }
\end{aligned}
\] & Level of Service & 95\% Back Vehicles weh & of Queve Distance m & Prop. Queved & Effective Stop Rate per veh & Average Speed lmin \\
\hline \multicolumn{12}{|l|}{South: Jenolan Caves Road - S} \\
\hline 1 & L & 13 & 75.0 & 0.270 & 48.3 & LOS D & 1.0 & 9.3 & 0.83 & 1.03 & 34.5 \\
\hline 2 & T & 1 & 0.0 & 0.270 & 41.7 & LOS C & 1.0 & 9.3 & 0.83 & 1.03 & 32.2 \\
\hline 3 & R & 23 & 31.8 & 0.270 & 45.6 & LOSD & 1.0 & 9.3 & 0.83 & 1.02 & 36.0 \\
\hline Approac & & 37 & 45.7 & 0.270 & 46.4 & LOS D & 1.0 & 9.3 & 0.83 & 1.03 & 35.4 \\
\hline \multicolumn{12}{|l|}{East: Great Western Highway - E} \\
\hline 4 & L & 39 & 32.4 & 0.040 & 13.6 & LOSA & 0.1 & 1.3 & 0.13 & 0.65 & 60.8 \\
\hline 5 & T & 415 & 15.2 & 0.117 & 1.1 & LOSA & 0.0 & 0.0 & 0.00 & 0.07 & 84.3 \\
\hline 6 & R & 1 & 0.0 & 0.001 & 12.7 & LOSA & 0.0 & 0.0 & 0.40 & 0.64 & 57.9 \\
\hline Approac & & 455 & 16.7 & 0.117 & 2.2 & NA & 0.1 & 1.3 & 0.01 & 0.12 & 81.6 \\
\hline \multicolumn{12}{|l|}{North: Blackmans Creek Road} \\
\hline 7 & L & 7 & 0.0 & 0.018 & 16.1 & LOS B & 0.1 & 0.4 & 0.51 & 0.83 & 47.3 \\
\hline 8 & T & 1 & 0.0 & 0.018 & 16.7 & LOS B & 0.1 & 0.4 & 0.51 & 0.96 & 45.1 \\
\hline 9 & R & 1 & 0.0 & 0.018 & 16.2 & LOS B & 0.1 & 0.4 & 0.51 & 0.98 & 45.4 \\
\hline Approac & & 9 & 0.0 & 0.018 & 16.2 & LOS B & 0.1 & 0.4 & 0.51 & 0.86 & 46.9 \\
\hline \multicolumn{12}{|l|}{West: Great Western Highway - W} \\
\hline 10 & L & 1 & 0.0 & 0.001 & 11.2 & LOSA & 0.0 & 0.0 & 0.00 & 0.73 & 60.4 \\
\hline 11 & T & 300 & 25.3 & 0.179 & 0.0 & LOSA & 0.0 & 0.0 & 0.00 & 0.00 & 90.0 \\
\hline 12 & R & 21 & 95.0 & 0.069 & 27.0 & LOS B & 0.3 & 3.2 & 0.61 & 0.88 & 50.3 \\
\hline Approac & & 322 & 29.7 & 0.179 & 1.8 & NA & 0.3 & 3.2 & 0.04 & 0.06 & 85.8 \\
\hline All Vehlic & & 823 & 22.9 & 0.270 & 4.2 & NA & 1.0 & 9.3 & 0.07 & 0.15 & 78.0 \\
\hline
\end{tabular}

Level of Service (LOS) Method: Delay (RTA NSW).
Vehicle movement LOS values are based on average delay per movement
Minor Road Approach LOS values are based on average delay for all vehicle movements.
NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays assoclated with major road movements.
SIDRA Standard Delay Model used.

Great Western Highway and Jenolan Caves Road
4.00-5.00pm

Future Peak Local Day Traffic (2035)
Stop (Two-Way)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{12}{|l|}{Movement Performance - Vehicles} \\
\hline Mov ID & Turn & Demand
Flow
vehh & \[
\begin{aligned}
& \text { HV } \\
& \%
\end{aligned}
\] & Deg. Satn wic & Average Delay sec & Level of Service & 95\% Back Vehlcles weh & \[
\begin{array}{r}
\text { Pueve } \\
\text { Distance } \\
\mathrm{m}
\end{array}
\] & Prop. Queved & Effective Stop Rate per veh & Average Speed kmh \\
\hline \multicolumn{12}{|l|}{South: Jenolan Caves Road - S} \\
\hline 1 & L & 16 & 80.0 & 0.379 & 42.3 & LOS C & 1.5 & 12.9 & 0.82 & 1.07 & 38.0 \\
\hline 2 & T & 1 & 0.0 & 0.379 & 35.2 & LOS C & 1.5 & 12.9 & 0.82 & 1.06 & 35.6 \\
\hline 3 & R & 57 & 7.4 & 0.379 & 36.9 & LOSC & 1.5 & 12.9 & 0.82 & 1.05 & 39.5 \\
\hline Approac & & 74 & 22.9 & 0.379 & 38.0 & LOS C & 1.5 & 12.9 & 0.82 & 1.06 & 39.2 \\
\hline \multicolumn{12}{|l|}{East Great Western Highway - E} \\
\hline 4 & L & 43 & 7.3 & 0.035 & 12.1 & LOSA & 0.1 & 0.9 & 0.06 & 0.67 & 61.4 \\
\hline 5 & T & 347 & 16.7 & 0.099 & 1.1 & LOSA & 0.0 & 0.0 & 0.00 & 0.07 & 84.3 \\
\hline 6 & R & 4 & 0.0 & 0.005 & 13.5 & LOSA & 0.0 & 0.1 & 0.48 & 0.69 & 56.8 \\
\hline Approac & & 395 & 15.5 & 0.099 & 2.4 & NA & 0.1 & 0.9 & 0.01 & 0.14 & 80.7 \\
\hline \multicolumn{12}{|l|}{North: Blackmans Creek Road} \\
\hline 7 & L & 1 & 0.0 & 0.011 & 22.7 & LOS B & 0.0 & 0.3 & 0.70 & 0.80 & 42.5 \\
\hline 8 & T & 1 & 0.0 & 0.011 & 23.4 & LOS B & 0.0 & 0.3 & 0.70 & 0.93 & 40.5 \\
\hline 9 & R & 1 & 0.0 & 0.011 & 22.8 & LOS B & 0.0 & 0.3 & 0.70 & 0.95 & 40.7 \\
\hline Approac & & 3 & 0.0 & 0.011 & 23.0 & LOS B & 0.0 & 0.3 & 0.70 & 0.89 & 41.2 \\
\hline \multicolumn{12}{|l|}{West: Great Western Highway - W} \\
\hline 10 & L & 1 & 0.0 & 0.001 & 11.2 & LOSA & 0.0 & 0.0 & 0.00 & 0.73 & 60.4 \\
\hline 11 & T & 477 & 10.6 & 0.261 & 0.0 & LOSA & 0.0 & 0.0 & 0.00 & 0.00 & 90.0 \\
\hline 12 & R & 8 & 50.0 & 0.015 & 18.4 & LOS B & 0.1 & 0.6 & 0.50 & 0.74 & 56.9 \\
\hline Approac & & 486 & 11.3 & 0.261 & 0.3 & NA & 0.1 & 0.6 & 0.01 & 0.01 & 89.1 \\
\hline All Vehlic & & 958 & 13.8 & 0.379 & 4.2 & NA & 1.5 & 12.9 & 0.07 & 0.15 & 78.0 \\
\hline
\end{tabular}

Level of Service (LOS) Method: Delay (RTA NSW).
Vehicle movement LOS values are based on average delay per movement
Minor Road Approach LOS values are based on average delay for all vehicle movements.
NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays assoclated with major road movements.
SIDRA Standard Delay Model used.

\section*{Appendix D}

\section*{Extracts of Forecast Flows from RMS Reports}

Transport and Urban Planning (2009) Traffic Study of Proposed Widening of Great Westem Highway, Bullabura (Pages 120-121)

\subsection*{5.3 Future Traffic Volumes in Great Western Highway at Bullaburra}

Traffic growth in the Great Western Highway at Bullaburra would be expected to increase by \(1.9 \%-2.2 \%\) per annum between 2007 and 2032. Given the land use changes at Lawson, the higher traffic growth of \(2.2 \%\) per annum is considered to better reflect the future land use changes.

The daily traffic volume and classification counts undertaken in late November / early December 2007 provided daily ( 7 day AADT) volumes in the Great Western Highway of:
- 22,552 vpd near Kalinda Road (east)
- \(22,312 \mathrm{vpd}\) east of Genevieve Road.

Adopting a linear average traffic growth rate of \(2.2 \%\) per annum provides the following future traffic volume projections for the Great Western Highway for the years 2008, 2012, 2022 and 2032.

\section*{TABLE 5.1}

PROJECTED DAILY (7 DAY AADT) TRAFFIC VOLUMES GREAT WESTERN HIGHWAY AT BULLABURRA
\begin{tabular}{|c|c|c|}
\hline Year & Near Kalinda Road (east) & East of Genevieve Road \\
\hline 2007 & 22,552 & 22,312 \\
\hline 2008 & 23,048 & 22,803 \\
\hline 2012 & 25,033 & 24,766 \\
\hline 2022 & 29,994 & 29,675 \\
\hline 2032 & 34,956 & 34,584 \\
\hline
\end{tabular}

Future traffic growth in the local streets in Bullaburra that intersect with the Great Western Highway will be incremental and, based on the future increases in the population and the number of dwellings between 2006-2021 in the Bullaburra/ Lawson area, could be expected to be up to \(14 \%\) over the next \(10-15\) years. The adoption of \(2.2 \%\) linear growth per year for the future peak hour traffic volumes using the local roads that intersect with the Great Western Highway would provide a conservative or higher rate of traffic growth that would take into account population growth plus other changes such as an increase in the number of drivers in the area, from smaller house sizes and more younger adults.

Roads and Traffic Authority (2006) The Great Westem Highway Upgra de Lawson Section 1A Traffic, Transport and Ac cessibility Report (page 9)

\section*{2. Future traffic volume projections}

Traffic volumes for five year intervals between 2005 and 2030 were estimated by projection from historical data. Linear and exponential regressions were compared. The linear regression line indicated a growth rate of approximately \(2.3 \%\) per annum (based on year 2002 traffic volume), which is considered reasonable for this type of road given its location with respect to major population centres and the relatively long 30 year analysis period.

Consequently, the traffic volumes shown in Table 2.1 have been predicted for the Great Westem Highway upgrade between Ferguson Avenue and Bass Street.

Table 2.1 Traffic volume projections
\begin{tabular}{|l|l|l|l|}
\hline Year & \begin{tabular}{l} 
AADT*** \\
Both Directions \\
\((\mathrm{vpd})\)
\end{tabular} & \begin{tabular}{l} 
AADT* \\
One Direction \\
\((\mathrm{vpd})\)
\end{tabular} & \begin{tabular}{l} 
Peak Hourly Volume \\
One Direction \\
(vpd)
\end{tabular} \\
\hline 2002 & 2185 I & 10926 & 863 \\
\hline 2005 & 23937 & 11968 & 945 \\
\hline 2010 & 26406 & 13203 & 1043 \\
\hline 2015 & 28875 & 14437 & 1141 \\
\hline 2020 & 31344 & 15672 & 1238 \\
\hline 2025 & 33813 & 16906 & 1336 \\
\hline 2030 & 36282 & 18141 & 1433 \\
\hline
\end{tabular}
** Based on a conversion rate of I.I5 axle pairs / vehicle
* Assumes 50/50 directional split

This table indicates, for example, that ten years after the proposed upgrade is complete i.e. 2020, the estimated vehicles per day using the Highway (in both directions) is approximately 31,300 or equivalent to a \(31 \%\) increase in traffic compared with current (2005) traffic volumes.

GTAConsultants

GHD (2006) The Great Westem Highway Upgrade Wentworth Falls East Review of Environmental Factors Volume 1 - Main Report (pages 114-115)

\subsection*{13.2 Future traffic volume projections}

Traffic volumes on the Great Western Highway for 2008, 2018, 2028 and 2038 were estimated by projection from historical data. A growth rate of approximately 556 vpd per annum (based 2002 traffic volumes) is projected, which is considered reasonable for this type of road given its location with respect to major population towns i.e. Sydney. Table 13.3 illustrates the projected weekday traffic volumes.

Table 13.3 Weekday traffic volume projections
\begin{tabular}{lccc} 
Year & \begin{tabular}{c} 
AADT \\
Both Directions \\
(vpd)
\end{tabular} & \begin{tabular}{c} 
AADT* \\
One Direction \\
(vpd)
\end{tabular} & \begin{tabular}{c} 
Peak Hourly Volume \\
One Direction \\
(vpd)
\end{tabular} \\
\hline 2006 & 25,063 & 12,532 & 1,003 \\
\hline \(2008^{* *}\) & 26,175 & 13,088 & 1,047 \\
\hline 2010 & 27,287 & 13,644 & 1,091 \\
\hline 2018 & 31,735 & 15,868 & 1,269 \\
\hline 2020 & 32,847 & 16,424 & 1,314 \\
\hline 2028 & 37,295 & 18,648 & 1,492 \\
\hline 2030 & 38,407 & 19,204 & 1,536 \\
\hline 2038 & 42,855 & 21,428 & 1,714 \\
\hline
\end{tabular}
\({ }^{*}\) Assumes 50/50 directional spfit
**Assumed completion date.
Table 13.3 indicates that ten years after the proposed upgrade is complete i.e. 2018, it is estimated that approximately 31,735 vehicles will be using the highway each day (in both directions) is, which is approximately \(39 \%\) increase in daily traffic from 2002.

GHD (2002) Upgrade of the Great Westem Highway - Woodford to Hazelbrook Review of Environmental Factors Volume 1 - Main Report (pages 25-26)

\subsection*{13.2 Future Traffic Volume Projections}

Traffic volumes for \(2000,2010,2020\) and 2030 were estimated by projection from historical data. Linear and exponential regressions were compared. The linear regression line indicated a growth rate of approximately \(2.4 \%\) per annum or 502 vehicles per day per year (based on year 1999 traffic volume), which is considered reasonable for this type of road given its location with respect to major population towns i.e. Sydney and the relatively long 30 year analysis period.

Consequently, the traffic volumes shown in Table 13.7 have been predicted for the Woodford-Hazelbrook section of the Great Western Highway.
This table indicates, for example, that ten years after the proposed upgrade is complete i.e. 2017, the estimated number of vehicles per day using the highway (in both directions) is approximately 29,518 which is equivalent to a \(35 \%\) increase in traffic volume over year 2002 volumes.

Table 13.7 Traffic Volume Projections
\begin{tabular}{|c|c|c|c|}
\hline Year & \begin{tabular}{l}
AADT \\
Both Directions (vpd)
\end{tabular} & \begin{tabular}{l}
AADT \\
One Direction (vpd)
\end{tabular} & Peak Hourly Volume One Direction (vpd) \\
\hline 1999 & 20,485 & 10,242 & 819 \\
\hline 2000 & 20,986 & 10.493 & 839 \\
\hline 2001 & 21,488 & 10,744 & 860 \\
\hline 2002 & 21,990 & 10,995 & 880 \\
\hline 2003 & 22,492 & 11,246 & 900 \\
\hline 2004 & 22,994 & 11,497 & 920 \\
\hline 2005 & 23,496 & 11,748 & 940 \\
\hline 2006 & 23,998 & 11,999 & 960 \\
\hline 2007 & 24,500 & 12,250 & 980 \\
\hline 2008 & 25,001 & 12,501 & 1,000 \\
\hline 2009 & 25,503 & 12,752 & 1.020 \\
\hline 2010 & 26,005 & 13,003 & 1,040 \\
\hline 2011 & 26,507 & 13,254 & 1,060 \\
\hline 2012 & 27,009 & 13,504 & 1,080 \\
\hline 2013 & 27,511 & 13,755 & 1,100 \\
\hline 2014 & 28,013 & 14,006 & 1,121 \\
\hline 2015 & 28,514 & 14,257 & 1,141 \\
\hline 2016 & 29.016 & 14,508 & 1,161 \\
\hline 2017 & 29,518 & 14,759 & 1,181 \\
\hline 2018 & 30,020 & 15,010 & 1,201 \\
\hline 2019 & 30,522 & 15,261 & 1,221 \\
\hline 2020 & 31,024 & 15,512 & 1,241 \\
\hline 2021 & 31,526 & 15,763 & 1,261 \\
\hline 2022 & 32,028 & 16,014 & 1,281 \\
\hline 2023 & 32,529 & 16,265 & 1,301 \\
\hline 2024 & 33,031 & 16,516 & 1,321 \\
\hline 2025 & 33,533 & 16,767 & 1,341 \\
\hline 2026 & 34,035 & 17,018 & 1,361 \\
\hline 2027 & 34,537 & 17,268 & 1,381 \\
\hline 2028 & 35,039 & 17,519 & 1,402 \\
\hline 2029 & 35,541 & 17,770 & 1,422 \\
\hline 2030 & 36,043 & 18,021 & 1,442 \\
\hline 2031 & 36,544 & 18,272 & 1,462 \\
\hline 2032 & 37,046 & 18,523 & 1,482 \\
\hline
\end{tabular}

\footnotetext{
* Assumes 50/50 directional split
}

\section*{Melboume}

A Level 25,55 Collins Street
PO Box 24055
MELBOURNE VIC 3000
+61398519600
F +61398519610
E melboume@gta.com.au

\section*{Sydney}

A Level 6, 15 Help Street CHATSWOOD NSW 2067 PO Box 5254
WESTCHATSWOOD NSW 1515
P +612 84481800
F +612 84481810
E sydney@gta.com.au

\section*{Brisbane}

A Level 4, 283 Eliza beth Street BRISBANE Qம 4000 GPO Box 115
BRISBANE QமD 4001
P +617 31135000
F +617 31135010
E brisbane@gta.com.au

\section*{Canbera}

Townsville

A Unit 4, Level 1, Sparta Building, 55 Woolley Street A Level 1, 25 Sturt Street

PO Box 62
DICKSON ACT 2602
P +61262434826
F +612 62434848
E canberra@gta.com.au

PO Box 1064
TOWNSVIUE QLD 4810
P +61747222765
F +617 47222761
E townsville@gta.com.au

\section*{Adelaide}

A Suite 4, Level 1, 136 The Parade
PO Box 3421
NORWOOD SA 5067
P +61883343600
F +618 83343610
E adelaide@gta.com.au

Gold Coast

A Level 9, Comorate Centre 2 Box 37
1 Corporate Court
BUNDAL Qம 4217
P +61755104800
F +61755104814
E goldcoast@gta.com.au```


[^0]:    ${ }^{1}$ The production rate of $1,100,000$ tpa has been confirmed by Lithgow City Council in correspondence to the NSW Environment Protection Authority following an applic ation by Hy-Tec to inc rease the activity limits on Environment Protection Licence 12323.

[^1]:    ${ }^{2}$ Traffic volumes summarised in Appendix 4 of the Review of Great Westem Highway Upgrades West of Katoomba - Independent review, Evans \& Peck, (2012). The data was originally sourced from the Great Westem Highway Upgrade, Mount Vic toria to Lithgow Implementation Strategy, RTA Alliance, (2011).

[^2]:    3 Program used under license from Akcelik \& Associates Pty Ltd.

[^3]:    Processed: Thursday, 23 January 2014 12:12:49 AM
    Processed. Thursdayy in January 201
    Project C:Users/Penny Dalton.GTADVDocumentsISIDRA1140123sid-13S9027000-Austen-Quarrysip
    8000056, GTA CONSULTANTS, ENTERPRISE

